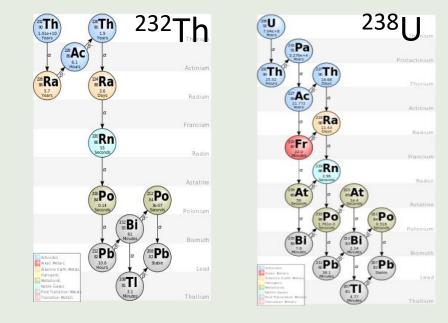
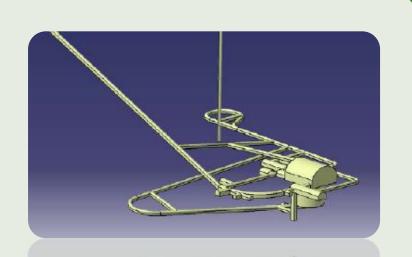


# **Novel High Sensitivity Analysis for Determination of Ultra-Trace Elements in Liquid Samples**




G. Baccolo<sup>[1]</sup>, A. Barresi<sup>[1]</sup>, D. Chiesa<sup>[1]</sup>, D. Merli<sup>[2]</sup>, <u>M. Nastasi</u><sup>\*[1]</sup>, E. Previtali<sup>[1]</sup>, M. Sisti<sup>[1]</sup>


University and INFN of Milano-Bicocca, Milano (Italy)<sup>[1]</sup>

University of Pavia, Pavia (Italy)<sup>[2]</sup>

# Introduction

In rare event experiments sensitivity is conditioned by the radioactive background





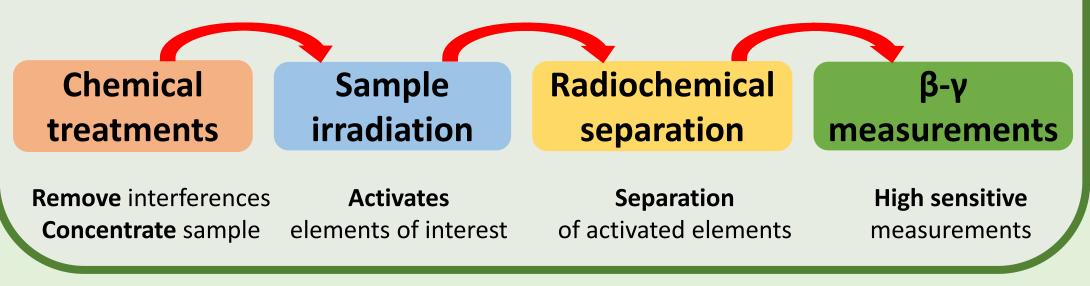
Background is mostly originated from natural radioactive elements present in the materials of the experimental apparatus

The greatest risk: radioactive background overlaps in the energy regions of interest

## **Material selection**

**Essential condition** to reduce radioactive background in last generation rare event searches with increasing sensitivity

High **radiopurity** materials:


acceptable levels for <sup>238</sup>U and <sup>232</sup>Th: **1·10<sup>-13</sup> - 1·10<sup>-15</sup> g/g** 

**Development of a methodological approach** for trace element measurements in organic liquids

(liquid scintillators (LS))

# High sensitivity analysis for the determination of

<sup>238</sup>U and <sup>232</sup>Th in organic liquids Our **methodological approach** combines neutron activation analysis (NAA), radiochemical treatments and high sensitivity measurements by a novel  $\beta$ - $\gamma$  low background detector



# **Neutron activation analysis**

The neutron activation process consists in the TRIGA Mark II production of unstable isotopes through neutrons absorption by the nuclei of interest in the sample

**STD** Sample and reference are exposed to a neutron flux

**Extraction** of the irradiated sample and **measurement** of induced Y radioactivity

 $^{232}_{90}Th + n \rightarrow ^{233}_{91}Pa$  $^{238}_{92}U + n - ^{239}_{93}Np$ 



(250 kW) - Pavia, Italy

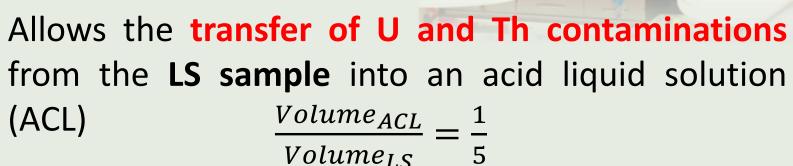
PMT

HPGe

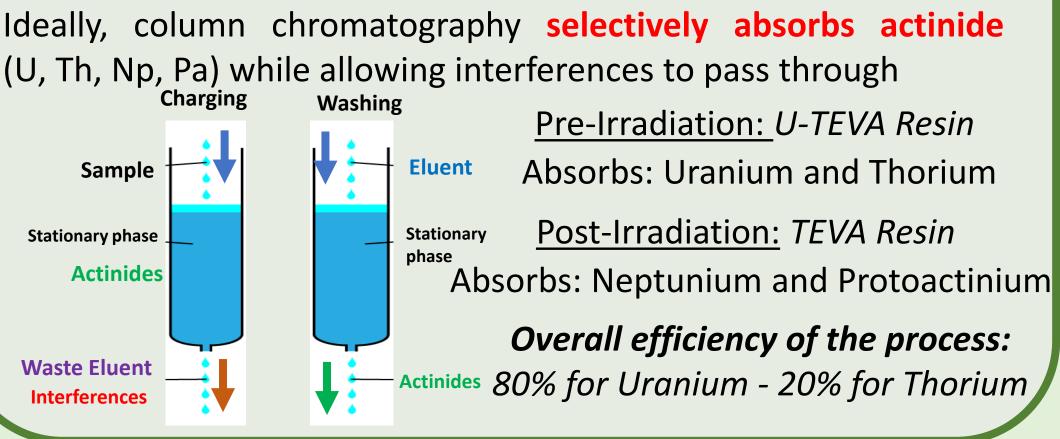
β·

LS

**Calculation** of the **quantity** of precursor element  $\binom{A}{Z}X$ 


## **Radiochemical treatments**

The following operations are carried out in sequence in **clean room** (class 1000)


**1.** Cleaning of tools prior to sample handling with a specific protocol

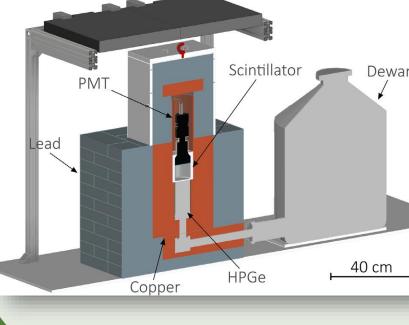
#### **2. Liquid-Liquid Extraction**





### **3. Extraction Chromatrography**




# **Test on blank sample**

The blank is a sample which went through all processing steps just **without LS.** Blank = nitric acid solution (mass: 228 g) **Measurements on blank sample** 



#### **β-y** measurements

Detector is made of a liquid scintillator and a high purity germanium (HPGe) operating in time coincidence



Activated sample is mixed with not irradiated liquid scintillator Dewar  ${}^{A}_{Z}X + n \xrightarrow{\beta} {}^{A+1}_{Z+1}Y + \gamma_{cascade}$ 

This measurement system is suitable to detect well-defined time correlated events allowing a strong reduction of background

<sup>238</sup>U [g/g] <sup>232</sup>Th [g/g] <7,7·10<sup>-14</sup> (9,5±2,4)·10<sup>-15</sup> limits @ 90% C.L.

Considering a LS sample of 1 kg without contaminations it is possible to achieve a **sensitivity of:** 2.10<sup>-15</sup> g/g for <sup>238</sup>U - 1,5.10<sup>-14</sup> g/g for <sup>232</sup>Th

#### Future plan...

In order to increase sensitivity:

- $\beta$ - $\gamma$  mesurements with an higher efficiency system
- Increase sample mass
- Apply the methodological approach to perform measurements on liquid scintillator samples used in rare events experiments



**Frontier Detectors for Frontier Physics - 15th Pisa Meeting on Advanced Detectors** La Biodola, Isola d'Elba, May 22-28, 2022

> \*Corresponding Author. *E-mail address:* massimiliano.nastasi@unimib.it