MAPS-based tracking and vertexing for EIC

Silicon

 ConsortiumGiacomo Contin - Università di Trieste and INFN Sezione di Trieste, Italy
on behalf of the EIC Silicon Consortium and the ATHENA Collaboration

Physics goals

- High-precision primary vertex determination
- Secondary vertex separation capability

Detector requirements

- Spatial resolution:
- $\leq 5 \mu \mathrm{~m}$ in tracking layers and disks
- $\sim 3 \mu \mathrm{~m}$ in the vertex layers
- Material budget:
- <0.8/0.3\% X/X X_{0} per layer/disk
$-\quad 0.1 \% \mathrm{X} / \mathrm{X}_{0}$ per vertex layer
- Power consumption 20-40 mW/cm ${ }^{2}$
- Integration time $2 \mu \mathrm{~s}$

Technology choice and proposed detector layout

- 65 nm MAPS near the interaction point complemented by MPGD technologies at larger radii
- 3 ultra-low mass bent MAPS layers for vertexing - $0.05 \% \mathrm{X} / \mathrm{X}_{0}$
- 2 MAPS layers for sagitta measurements $-0.55 \% \mathrm{X} / \mathrm{X}_{0}$
- 6 (hadron) +5 (electron) MAPS disks $-0.24 \% \mathrm{X} / \mathrm{X}_{0}$
athena proposal

Layers	Radius (cm)	Length (cm)
L0, L1, L2	$\sim 3.5-6.0$	~ 28
L3, L4	$\sim 13-18$	$\sim 35-48$
Disks	In/out R (cm)	z distance (cm)
6 forward	$\sim 3.5-43$	$\sim 25-165$
5 backward	$\sim 3.5-43$	$\sim 25-145$

EIC Silicon R\&D

- Vertex and tracking detector for EIC developed within the EIC Silicon Consortium
- Sensor development and characterization within the ALICE ITS3 framework
- Services reduction via optimised powering and readout schemes (eRD104 project)
- Detector development (eRD111 project)
- Module concept: adapt size and integrate in light support/bus
- Stave and disk concepts: segmentation for high yield, low cost, max coverage
- Mechanics and Cooling: air cooling on carbon foam
disk tiling options:

3-reticle long sensor Stave concept options Overlapping modules

Conclusions

- EIC VertexTracker proposed by ATHENA
- Based on 65 nm CMOS stitched sensor
- Developed for the ALICE ITS3 project
- Will be adapted to EIC needs
- R\&D for Module, Stave, Disk is progressing
- Novel solutions studied for readout/powering

