MAPS-based tracking and vertexing for the Electron-Ion Collider

Giacomo Contin - Università di Trieste and INFN Sezione di Trieste, Italy

on behalf of the EIC Silicon Consortium and the ATHENA Collaboration

EIC vertex and tracking detector: from requirements to technology choice

Requirements of an EIC vertex and tracking detector: • Wide kinematic coverage • Good momentum resolution • High-precision primary vertex determination Secondary vertex separation capability → Well integrated, large acceptance detector featuring high granularity and low material budget.

Detector requirements

- Spatial resolution:
 - $\leq 5 \,\mu m$ in tracking layers and disks
 - $\sim 3 \ \mu m$ in the vertex layers
- Material budget:
 - <0.8/0.3% X/X₀ per layer/disk
 - $< 0.1\% X/X_0$ per vertex layer
- Power consumption 20 40 mW/cm²
- Integration time $2 \mu s$

65 nm MAPS for the EIC

ATHENA vertex and tracking detector

- 65 nm MAPS near the interaction point complemented by MPGD technologies at larger radii.
 - 3 ultra-low mass MAPS layers for vertexing
 - 2 MAPS layers for sagitta measurements
 - 6 MAPS forward disks (hadron-going)
 - 5 MAPS backward disks (electron-going)
- Length (cm) Radius (cm) Layers L0, L1, L2 $\sim 3.5 - 6.0$ ~ 28 L3, L4 ~ 13 - 18 ~ 35 – 48 disks In/out R (cm) z distance (cm) 6 forward ~ 3.5 - 43 ~ 25 - 165 5 backward ~ 3.5 – 43 $\sim 25 - 145$
- Full coverage of the available space \rightarrow tracking acceptance of -3.8 < η < 3.75. ۲
- Low material budget tracking with sufficient redundancy over a large lever arm \rightarrow critical to achieve the required momentum resolution.

- New MAPS generation developed by ALICE **ITS3** collaboration
- Target specifications for the sensor:
 - Pixel pitch ~ 20 μ m
 - Power consumption $\sim 20 \text{ mW/cm}^2$ (50%) reduction wrt ALPIDE)
 - Integration time $\sim 200 \text{ ns}$
- ITS3 detector layout with 0.05% $X/X_0 \rightarrow$ adopted for EIC vertex layer.
 - Wafer-scale (up to \sim **28 x 10 cm**²), thin sensor (20 - 40 μ m), bent around beam pipe
 - Air cooling, carbon foam rings and cylindrical structural shell, no electrical services in active area

ATHENA baseline hybrid tracking system

Tracking material surfaces as a function of pseudorapidity

EIC Silicon R&D

- The EIC Silicon Consortium formed in 2020 to develop a vertex and tracking detector for EIC
 - Based on MAPS sensors (65 nm CMOS) and associated detector technologies
 - Larger group of participants from EIC Users Group, not tied to a specific collaboration
 - Now working in close collaboration with the EIC Detector-1 Tracking Working Group
- **Sensor development and characterization** within the ALICE ITS3 framework
 - Sensor yields to be evaluated after ITS3 stitched sensor characterization
 - EIC-specific stitching plan to maximize yield and wafer-area usage
 - Possibility to optimize the sensor operations to EIC-specific detector design
- Services reduction via optimsed powering and readout schemes (eRD104 project) •
 - Radiation tolerant DC-DC converters, or Serial powering with on-die or hybrid power regulation
 - On-detector data regulation through FPGA, receive over twinax/FPC, transmit over fiber
- **Detector development** (eRD111 project)
 - Module concept:

L3 segmentation options: 2-reticle wide sensors

disk tiling options: 2 module variants

- Dedicated EIC development for tracking layers and disks
 - Optimised ITS3 sensor size for high yield, low cost, large area coverage
 - Baseline stave concept: 0.55% X/X₀
 - Baseline disk concept: 0.24% X/X₀

- Adapt vertex layers to EIC radii lengths
- Integrate sensor with light supports/bus for staves/disks
- Stave and disk concepts
 - Segmentation options for improved yield / lower cost
 - Tiling options for maximum coverage
 - Module production and integration in large area segments
- Mechanics and Cooling
 - Air cooling on carbon foam structure under investigation

Conclusions

Challenging vertexing and tracking requirements necessary for physics goals at the EIC. 65 nm MAPS offers the best solution: large-area stitched sensor developed within the ALICE ITS project can be adapted to EIC needs. R&D ongoing within the EIC SC to develop detector concept and infrastructure

15th Pisa Meeting on Advanced Detectors - La Biodola, Isola d'Elba, May 22-28, 2022