Tracking the Time: Single cell 3D pixel time resolution and Landau contribution evaluation via test-beam and laboratory measurements

Fernandez Martínez P.¹, Coco V.², Gkougkousis E. - L.², Halvorsen Mahlum M.³, Petrogiannis G.¹, Pellegrini G.⁴, Rodríguez Rodríguez E.⁵

¹The Barcelona Institute of Science and Technology (BIST), ² European Center for Nuclear Research (CERN), ³University of Oslo (NO), ⁴Institute of Microelectronics of Barcelona (IMB-CNM), ⁵Galician Institute of High Energy Physics (IGFAE) - Universidade de Santiago de Compostela (USC) Email: efren.rodriguez.rodriguez@cern.ch

The proven potential of 3D geometries at higher than 10¹⁶ neq/cm² radiation fluences, in combination with a small cell approach, makes them an excellent choice for a combined precision timing tracker. In this study, the timing resolution of a single 50 x 50 µm 3D pixel cell is presented in various temperatures through charge collection measurements with discrete electronics in a laboratory setting. The series is complemented by an extensive test-beam campaign with 160 GeV SPS pions, using a multi-plane timing telescope with an integrated pixelated matrix. Through a varied incidence angle study, field uniformity, Landau contribution and collected charge are treated at incidence angles of +/- 12°. Using state of the art numerical methods, the choice of instrumentation on signal composition and induced bias on results is also evaluated. Finally, with the help of the EUDET telescope, a detailed timing, field and efficiency map is presented with a 5 µm spatial resolution through MIMOSA CMOS tracking at CERN SPS pion beams.

Tracking & alignment

Telescope Planes

- 6 MIMOSA planes for tracking
- Plane no. 5 known to be bad
- Expected 5µm tracking resolution
- Estimated acquired number of events ~1M

Single pixel 3D (CNM 5936-11, 50 x 50 µm²)

USBPIX_GEN2_BOARD_200 20 Raw Hitr

Data Acquisition

• Trigger by coincidence in 2 scintillators and ROI in FEi4 board

structures

Figure 7: 3D squematics for 1st TestBeam sensor setup

 Extremely small ROI requiring large data taking periods for sufficient statistics (Efficiency ~20%) LGADs used as timing references staggered to limit

Preliminary results

Signal Reconstruction for 3D sensors Acquisition frame from oscilloscope (~850.000 ROI events)

