

Skipper-CCDs: current applications and future

Brenda Aurea Cervantes Vergara (bren.cv@ciencias.unam.mx) PM2021 - 15th Pisa Meeting on Advanced Detectors - Edition 2022 (May 22-28, 2022)

Fermilab

How does a skipper-CCD work?

Charge-Coupled Devices (CCDs) are essentially an array of Metal-Oxide-Semiconductor capacitors. Radiation interacting in the active volume produces e-h pairs. Packets of charge are collected below the surface and transferred towards a readout stage.

The skipper-CCD technology first demonstrated a good performance in 2017 [1] using a detector designed by Stephen Holland (LBNL) allowing to count electrons!

Standard CCD mode: charge in each pixel is measured once

New Skipper CCD: charge in each pixel is measured multiple times

lows to perform multiple (N) non-destructive measurements of the same charge packet. • Readout noise is reduced as $\sigma = \sigma_1 / \sqrt{N}$

Current applications

Direct DM searches • SENSEI @ MINOS [2]

With a mass of ~ 2 g, the lowest single-e⁻ rate in Si detectors was achieved ($\sim 10^{-4} \text{ e}^{-}/\text{pix}/\text{day}$) imposing world-leading constraints in a large range of sub-GeV dark matter masses.

• Ongoing program

Searching for $CE\nu NS$

• CONNIE [3]

Located ~ 30 m away from the core of the Angra 2 nuclear reactor in Brazil, CONNIE has recently installed 2 skipper-CCDs currently running stable.

With 4 kdru of bkgd and 1 kg mass, a skipper-CCD detector at the CONNIE site should run for 9 days (if Lindhard) or 2 months (if Chavarria) to observe $CE\nu NS$ at a 90% C.L.

Towards multi-kg experiments

With the current technology, a ~ 100 g skipper-CCD experiment $(\sim 50 \text{ sensors})$ is plausible.

But for a 10 kg experiment ($\sim 24,000$ sensors), it is needed:

- To engage new foundries for mass production of sensors*
- To develop new front-end electronics to read and control multiple channels

Experiment	Mass	Background	Commissioning
DAMIC @ SNOLAB	~20 g	5 dru	12/2021
DAMIC-M (proto)	~10 g	1 dru	11/2021
SENSEI-100	~100 g	5 dru	mid-2022
DAMIC-M	~1 kg	0.1 dru	2023
OSCURA	10 kg	0.01 dru	~2027

• ν IOLETA [4]

Planned kg-size skipper-CCD experiment to run ~ 12 m away from the core of Atucha II nuclear reactor, in Argentina. Recently installed skipper-CCDs.

Reactor experiments searching for $CE\nu NS$ are competitive constraining BSM physics! [5] [6]

Other applications

- Astronomy: Observation of faint objects and high-resolution spectroscopy
- Quantum imaging

- To come up with packaging ideas in terms of the system design
- To explore new ways to efficiently cool down 24,000 sensors

and this should be done while having a good radioactive background control.

*DALSA, our previous foundry, discontinued this production line.

Ongoing progress (Oscura R&D effort)

board with analog pile-up circuits [8].

• Sensors

• Electronics

The first batch of e⁻-counting sensors was successfully fabricated at Microchip Inc. achieving $10^{-1} \,\mathrm{e}^{-}/\mathrm{pix}/\mathrm{day}$. Characterization ongoing.

8000

6000

4000

2000

500 1000 1500

Demonstrated good performance of 16-channel multiplexer

Demonstrated operations of the multi-channel cryogenic low-noise skipper-CCD readout ASIC (MIDNA) [9].

n microchip sensor

• Cryogenics

Demonstrated skipper-CCD operation in pressurized LN_2 vessel. Environmental background characterization ongoing.

[1]	[PRL 119, 131802 (2017)]	[6]	[JHEP 04 (2020), 054]
[2]	[PRL 125, 171802 (2020)]	[7]	[10.48550/ARXIV.2202.10518]
[3]	[JHEP 05 (2022), 017]	[8]	[JINST 16 P11012]
[4]	[Poster $\#521$ @ Neutrino 2020]	[9]	[10.2172/1841383]
[5]	[JHEP 02 (2022), 127]		