2D Interleaved Readouts for MPGDs
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Introduction

Coarsely segmented (pitch > 1 mm) zigzag-shaped anode strip arrays have been shown to have considerable advantages over similarly pitched straight strip arrays for
standard planar MPGDs, including GEM, Micromegas, and uRWELL detectors. Once the geometric parameters of the zigzag are precisely tuned for a specific detector
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application, the spatial resolution remains high and approximately flat for very large pitches, up to 3.3 mm or more. Additionally, the response of the optimized zigzags
along the measured coordinate and in the orthogonal direction are highly uniform without the need for differential non-linearity corrections. We extend the enhanced
charge sharing characteristic of the zigzags to the case of a 2D readout by employing anode structures that are interleaved along two distinct directions. This allows for
the possibility to choose arbitrary coordinate axes suitable for particular detector applications. As in the 1D case, the segmentation of the 2D anodes can also be large

to minimize the channel count and save considerably on the readout electronics.

Motivation: Linear Charge Sharing Model
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« The segmentation of the anodes into strips/pads may be =, d=imm — 5= 252 0=0- 5
customized to achieve a given occupancy requirement

« Coarsely segmented anodes allow for simpler trace routing
on fewer layers in the board stack-up

« 2-layer flex-circuit boards are possible, offering
tremendous flexibility for the detector backplane design s=+25 %, d=0.5 mm 5=0 %, d=1 mm

Extension to Different MPGDs
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Compare ZZ Patterns and Responses
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 We have shown that 2D interleaved anode structures can be constructed by a relatively « Demonstrate scalability to 400mm x 400mm tracking area, suitable for EIC applications

simple rearrangement of the 1D zigzag diamond-shaped elements

» Produce and measure test patterns with stereo strips to help remove track ambiguities

« The resulting 2D patterns with relatively coarse pitch are capable of producing excellent .

setting for both GEM and uRWELL (so far)

» ALAPPD coupled to a 2D interleaved readout may be employed in TOF-PET for improved timing
and spatial resolution compared to conventional state of the art readouts

* While the 2D designs investigated did show a relatively small DNL, we expect this
contribution to the overall resolution will be significantly minimized once the anode
parameters are optimized, as was demonstrated for the 1D case
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- . , : , Extend 2D anode concept to other technologies such as photosensitive detectors, including Large
position resolution and a relatively uniform detector response both in a lab and beam test Area Picosecond Photo-Detectors (LAPPDs) and MCP-PMTs for various RICH applications




