2D Interleaved Readouts for MPGDs

B. Azmoun ${ }^{1}$, S. Aune ${ }^{3}$, K. Dehmelt ${ }^{2}$, A. Deshpande ${ }^{2}$, W. Fan², P. Garg ${ }^{2}$, K. Gnanvo ${ }^{5}$, T. K. Hemmick ${ }^{2}$, M. Kebbiri³, A. Kiselev ${ }^{1}$, . Mandjavidze ${ }^{3}$, S. Nelson ${ }^{7}$, S. Park ${ }^{6}$, C. Perez Lara ${ }^{5}$, M. L. Purschke ${ }^{1}$, M. Revolle ${ }^{4}$, B. Schmookler ${ }^{2}$, M. Vandenbroucke ${ }^{4}$, C. Woody
 ${ }^{1}{ }^{1}$ Srookhaven National Laboratory, Physics Dept, Upton, NY, USA
${ }_{2}^{\text {Stony }}$ Broo K Univesity, Dept. of Physis s and Astronomy, Stony Bro

6 Stony Brook University
 ${ }^{\text {STUniversity of V Virginia, Dept. of Physics, Charlottesville, VA USA }}$ \qquad
TFIIorida A\&M University, Dept. of Physics, Tallahasssee, FL USA
PM2021

Introduction

Coarsely segmented (pitch > 1 mm) zigzag-shaped anode strip arrays have been shown to have considerable advantages over similarly pitched straight strip arrays for standard planar MPGDs, including GEM, Micromegas, and μ RWELL detectors. Once the geometric parameters of the zigzag are precisely tuned for a specific detector application, the spatial resolution remains high and approximately flat for very large pitches, up to 3.3 mm or more. Additionally, the response of the optimized zigzags along the measured coordinate and in the orthogonal direction are highly uniform without the need for differential non-linearity corrections. We extend the enhanced charge sharing characteristic of the zigzags to the case of a 2D readout by employing anode structures that are interleaved along two distinct directions. This allows for the possibility to choose arbitrary coordinate axes suitable for particular detector applications. As in the 1 D case, the segmentation of the 2 D anodes can also be large to minimize the channel count and save considerably on the readout electronics.

Motivation: Linear Charge Sharing Model

Design Philosophy

- Interleaved anode geometries substantially improve
charge sharing
- Coarse segmentations maintain excellent position
resolution with fewer frontend electronics channels
- The design of the anode structure may be tuned so that
the reconstructed position varies linearly with charge
sampling everywhere across the readout
- Geometric parameters to be optimized: pitch, period,
stretch
Achieve uniform detector response with no needed
correction functions
- The segmentation of the anodes into strips/pads may be
customized to achieve a given occupancy requirement
Coarsely segmented anodes allow for simpler trace routing
on fewer layers in the board stack-up
- 2-layer flex-circuit boards are possible, offering
tremendous flexibility for the detector backplane design

The corrected and raw position
resolutions are virtually identical
$\xrightarrow{\rightarrow \text { No corrections needed! }}$

Extension to Different MPGDs

Concept for 2D Interleaved Readout Pads

Measurements

$2 \times 1 \mathrm{D}$ (self-testing) patterns

Effectively, two identical1D readout patterns are superimposed and sample the same cluster along the same direction
It is thus possible to compute a centroid from both planes and form a position residual with no need for planes and form a position residual
an independent position reference
The intrinsic resolution may be calculated, free of external factors under the assumption both planes external factors under the
have the same resolution

2D interleaved patterns

Normal incidence, 120 GeV proton beam at FTBF
The position resolutions have a differential
The position resolutions have a differential non-linearity (DNL) correction applied, however the correction only accounts for about $5 \mu \mathrm{~m}$ for this pattern.

Outlook

- Demonstrate scalability to $400 \mathrm{~mm} \times 400 \mathrm{~mm}$ tracking area, suitable for EIC applications
- Produce and measure test patterns with stereo strips to help remove track ambiguities

Extend 2D anode concept to other technologies such as photosensitive detectors, including Large Area Picosecond Photo-Detectors (LAPPDs) and MCP-PMTs for various RICH applications
A LAPPD coupled to a 2D interleaved readout may be employed in TOF-PET for improved timing and spatial resolution compared to conventional state of the art readouts

Summary

We have shown that 2 D interleaved anode structures can be constructed by a relatively simple rearrangement of the 1D zigzag diamond-shaped elements

The resulting 2D patterns with relatively coarse pitch are capable of producing excellent position resolution and a relatively uniform detector response both in a lab and beam test setting for both GEM and μ RWELL (so far)

While the $2 D$ designs investigated did show a relatively small DNL, we expect this contribution to the overall resolution will be significantly minimized once the anode parameters are optimized, as was demonstrated for the 1D case

