1. Motivation and the ATLAS ITk Strips Sensors

- ATLAS Inner Tracker (ITk) fully silicon upgrade comprises pixel and strip sensors
- Strips comprises 22000 sensors of 8 types (2 barrel and 6 endcap)
- Each sensor to be evaluated for quality control (QC) at various institutes with various test setups
- For this, developed common framework with common algorithms to objectively assign pass/fail, interface with common database, and do reporting

2. Workflow

3. Treatment of Current-Voltage (IV) Tests

Method A: (modified from tech spec.)

\[V_{bd} = \text{earliest} \, V_{b, \text{sat}} < -100 \text{ V} \text{that satisfies} \]

\[\frac{1}{V_{bd}} = \frac{1}{V_{b, \text{sat}}} + \frac{1}{V_{b, \text{sat}}^*} - \frac{1}{V_{b, \text{sat}}^*} \]

\[\frac{1}{V_{bd}} > 5 \text{ i.e. avg of 3 local slopes along point divided by min local slope} \]

Method B: (modified from [3])

\[V_{bd} = \text{earliest} \, V_{b, \text{sat}} < -100 \text{ V} \text{that satisfies} \]

\[\frac{1}{V_{bd}} = \frac{1}{V_{b, \text{sat}}} + \frac{1}{V_{b, \text{sat}}^*} - \frac{1}{V_{b, \text{sat}}^*} \]

\[\frac{1}{V_{bd}} > 5 \text{ i.e. local slope at point divided by slope of line from origin to point ("total derivative") > 5.} \]

Method C: (modified from B)

\[V_{bd} = \text{earliest} \, V_{b, \text{sat}} < -100 \text{ V} \text{that satisfies} \]

\[\frac{1}{V_{bd}} = \frac{1}{V_{b, \text{sat}}} + \frac{1}{V_{b, \text{sat}}^*} - \frac{1}{V_{b, \text{sat}}^*} \]

\[\frac{1}{V_{bd}} > 5 \text{ i.e. B but with averaging, and running threshold to compensate for gradually decreasing total derivative} \]

4. Treatment of Individual Strip ICR Tests

- AC-coupled metal strips probed automatically to characterize strip RC network and AC current
- Combinations of this info lets scripts distinguish different failure modes (metal short, implant break, short, pinhole, Ibias defect), and measurement issues

5. Batch Reporting

- QC approval done on batch-by-batch basis
- Reports show interactive diagnostic histograms and plots by batch
- Allows humans to visually detect batch issues and outliers not immediately obvious to an algorithm
- Reporting tool designed to provide a concise table summary and plots of all tests in a batch in a single place for monitoring
- Scripts allow for direct interactive access to database data in python for studies

6. Current Status

- Scripts have proven a robust, reliable, and intuitive interface for reporting and monitoring, and have already been instrumental in helping catch subtle issues with sensors and testing
- Have already processed 2500 sensors through preproduction and production in 7 institutes in 5 countries
- Undergoing continuous development to add new features useful to QC sites as we enter production

References & Acknowledgements

[2] 10.1016/S0168-9002(00)01207-0

This work was supported by the Department of Energy, grant DE-SC0010507; the Ministry of Education, Youth and Sports of the Czech Republic coming from the projects LTT17018 Inter-Knowledge and LM2018104 CERN-CZ and by Charles University grant GAUK 942119, the JSPS Grant-in-Aid for Research Activity Start-up 20K22346; the Canada Foundation for Innovation and the Natural Sciences and Engineering Research Council of Canada, the Science and Technology Facilities Council of the UK Research and Innovation national funding agency grant ST/W000490/1, the Spanish R&D grant PID2019-104456RB-C22, funded by MCIN
AEI/10.13039/501100011033; the Gates Cambridge Trust and Churchill College Cambridge.