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Sterile neutrino search with KATRIN Entrance window model

lel8 ms=10.0 keV, sin?6=0.2

KATRIN can search for keV sterile neutrinos ~— petve ronn Electron spectroscopy is challenging because
by measuring the whole Tritium spectrum -> darr=nie eiomiine electrons not always deposit all their energy in
the signature is a kink [1] the detector:
o they can be backscattered -> depends on
e A high-statistics differential measurement is .5 the interaction with Silicon, simulated in incident e
needed -> KATRIN detector has to be — e Geant4
changed with a faster one that can provide a S o they lose energy in the dead layer
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the energy deposited in each layer is

Silicon Drift Detectors (SDDs) are an excellent
choice, being characterized by a small anode

capacitance, they present: saved _ |
o rise-times of the order of tens of ns -> the total energy is the weighted sum of

high-rate measurements possible the ones deposited in layers and bulk

sl energy resolution close to the Fano limit in _ :
Silicon [2] exponential QE with respect to the depth
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weights are assigned assuming an |
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How to build the prediction
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Raw spectrum: it includes backscattering Separate the energy deposited in the _ _ :
- Apply weights to the energy deposited Apply energy resolution
electrons and escape X-rays 30 layers and in the bulk _ ) g ith dat
in the layers and sum up to obtain the and compare with aata

total visible energy

Comparison with SEM data Forbidden 3 spectra and g,

Monochromatic and collimated electrons from a Scanning Electron Microscope Forbidden B spectra description depends B
(SEM) -> different energies and angles strongly on the nuclear model and on da
Good agreement between data and simulation found for all the combinations Recent measurements found out a g,

e A reliable model for the electron response is mandatory for the sterile neutrino quenching for some isotopes [5]
search Up to 50% differences in [ shape

Reduced x2 = 1.12 Reduced 2 = 1.13 assuming diﬂ:erent gA (for 113Cd )
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Statistical sensitivity on g4 (Reference: ga = 1)
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With 10* collected electrons a statistical
uncertainty on g, compatible with
calorimetric measurements [5] can be
| | | | | | | | | L L i achieved

’ ) -l A quasi-monochromatic  response
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see poster “The TRISTAN Detection Module: a 166-Pixel Monolithic SDD Array for Beta Spectroscopy” 10° Number of coﬁg;ed clectrons ' function is needed to reach this level
by C. Fiorini for details about the current status of the TRISTAN detector
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SDD based spectrometer to measure 3 spectra

Simulated 500 keV electrons Simulated 113Cd spectrum with g, =1
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e Geant4 simulation of an SDD and a veto system I e 500 keV electrons simulated, a 10 keV threshold is I 113 : :
de by f intillators [6 I 1S ’ I e Cd simulated, enabling full veto the spectrum
rl_r;la he y fast .Scmr'] ators [6] v el I assumed for scintillators o shape is compatible with the theoretical one
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