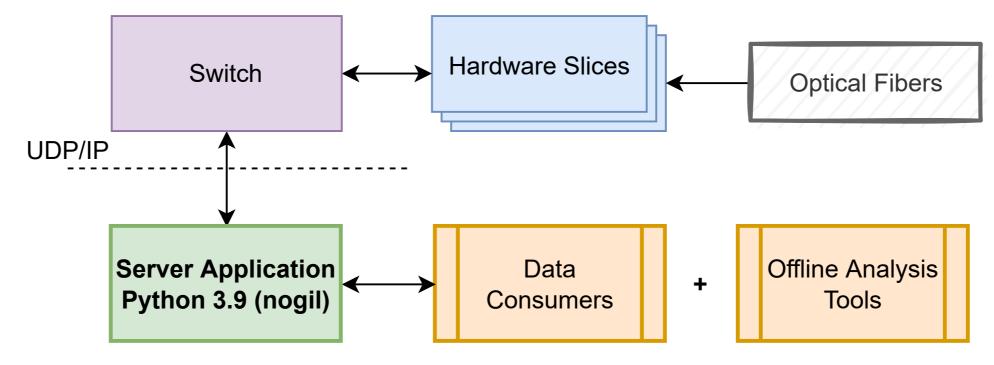


A Modular Data Acquisition System for Reconstruction of Radiation Dose Spatial Distribution in Radiotherapy Treatment Planning

Paweł Jurgielewicz¹, Marcin Filipek¹, Tomasz Fiutowski¹, Damian Kabat², Kamila Kalecińska¹, Łukasz Kapłon², Maciej Kopeć¹, Stefan Koperny¹, Dagmara Kulig², Jakub Moroń¹, Gabriel Moskal², Antoni Ruciński³, Piotr Wiącek¹, Tomasz Szumlak¹, and Bartosz Mindur¹



¹AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland ²Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology Krakow Branch, Krakow, Poland ³Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

Poster Summary

We present a comprehensive Data Acquisition (DAQ) system for future 3-dimensional radiation dose deposition detector dedicated for improvement of cancer-diagnosed patients' treatment planning

- ► The hardware is based on fine-grained scintillator cells and extendable signal processing units (64-channel each) providing simultaneous and synchronous information about number of photons and their energy
- ► The DAQ framework eases communication between hardware and software layers and exposes UDP/IP protocol while software manages acquistion process and broadcasts data to consumer widgets
- ► We show preliminary results indicating possibility of reliable energy estimation and counting photons with the presented system

dose3d.fis.agh.edu.pl pawel.jurgielewicz@agh.edu.pl