
Background rate of X-ray TES micro-calorimeter arrays
for elusive particle search experiments

Measured with “40pixA” prototype 
setup

• To achieve the extreme sensitivities necessary to perform elusive particle searches like 𝛽-decay spectroscopy for neutrino mass measurement or dark matter detection, future experiments are considering employing large
arrays of cryogenic detectors, such as metallic-magnetic calorimeters (MMCs) or transition-edge sensors (TES) [1].

• A TES is a thin film of superconducting material weakly coupled to a thermal bath typically at 𝑇 < 100 mK, that can be used as a radiation detector by exploiting its very sharp phase transition. We have been developing X-
ray TES micro-calorimeters optimized for X-ray astronomy up to energies of 12 keV, as well as a frequency-domain multiplexing (FDM) [2] technology to perform their readout. Energies up to ∼10 keV are compatible with
the expected spectrum of axion-like particles arriving on Earth generated in the Sun by electron processes and Primakoff conversion [3], which will be investigated in the future by axion helioscopes such as IAXO [4] and its
prototype BabyIAXO. A fundamental instrumental requirement is the background of the X-ray detectors, which should be at a level < 10−8 keV−1cm−2s−1 (10−7 keV−1cm−2s−1 for BabyIAXO) [5]. TES represent a suitable choice
for this science case, given their high energy resolution and quantum efficiency, low intrinsic background and scalability to large (∼1000s) arrays.

• In this contribution we present a measurement of X-ray background, using a TES array with 240×240 𝜇m2 absorber area and energy resolution at a level of 2 eV at 5.9 keV with an FDM readout [6].
• We show the data analysis method and prospect possible improvements, such as coupling with a cryogenic anti-coincidence and the introduction of a PTFE and Pb shielding around the sensitive area of the setup, to

further reduce the background rate from the measured level with our current TES array, non-optimized for such purpose.
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SCIENCE CASE: SOLAR AXIONS EXPERIMENTAL SETUP: TES array + FDM readout
• Axion originally introduced to solve the strong CP problem [7].
• Axions and axion-like particles (ALPs) are attractive candidates for dark matter [8] and

to explain other astrophysical observations [9].
• Axions are theoretically generated in the Sun via electron processes and Primakoff

conversion. The axion flux on Earth is observable via helioscopes, exploiting the axions
coupling with a magnetic field B of length L. For light axions (ma < 10 meV) the
conversion probability is [10]:
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• The energy spectrum of conversion photons has a range of up to approximately 10 keV,
with the Primakoff contribution peaked at 3 keV (for gaγ = 10-11) GeV-1.

• CAST set the best upper limit yet on gaγ to 6.6×10-11GeV-1 [11]. Its successor IAXO will
target a sensitivity on gaγ of 10-12 GeV-1. IAXO’s baseline detectors are CAST’s
Micromegas time-projection chambers [12]. For systematics reduction, different
detector technologies with similar low background should be employed.
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• TES current from 27 pixels continuosly acquired in 5-minutes chunks (2861 “noise”
events, 16384 samples @ 156.25 kHz sampling rate)

• Acquired event processing:
Ø TES baseline subtraction and drift correction
Ø Pulse shape search
Ø Storing of recorded pulse shapes with pixel and timing info for offline analysis

• Photons from 55Fe source + Modulated X-ray Source (MXS) for energy calibration:
Ø Cr-Kɑ (5.41 keV), Mn-Kɑ (5.90 keV), Cu-Kɑ (8.05 keV)
Ø Cr-Kβ (5.95 keV), Mn-Kβ (6.49 keV), Cu-Kβ (8.91 keV)

• Source X-ray spectrum calibrated using optimal filtering in frequency domain [13]
• Optimal filter fit positions estimation via Gaussian fitting of spectral lines (A)
• Energy scale calibration using a 3rd order polynome (B)
• Energy scale cross-calibration between optimal filter and pulse surface
• Event selection:

Ø Energy from pulse surface: exclude baseline drifts/spurious signals
Ø Temporal coincidence: exclude cosmic muons hits

• Energy scale correction in the 0.1 keV to 12 keV range (nominal range for our TES)
• Correction for quantum efficiency for 2.3 µm Au absorber [14] (C)
• X-ray background rate estimation from histogram:

Ø Total active area A = 27 × (240 µm)2 = 0.015552 cm2 (8×0.15 cm2 for IAXO [5])
Ø Total acquisition time tnoShield = 41.6 days, twithShield = 50.6 days
Ø Poisson uncertainty per bin σ given by square root of bin counts Ncounts
Ø Background estimated via Maximum Likelihood estimators (uniform hypothesis):

Ø Fit of histogram with Moyal distribution to check impact from cosmic muons:
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μBG = 2.5×10-4 cm-2 s-1 keV-1

• Measured X-ray background without dedicated shielding = 1.18(5)×10-3 cm-2 s-1 keV-1
• Measured X-ray background with Pb+PTFE shielding = 2.4(2)×10-4 cm-2 s-1 keV-1:

ü comparable level to latest status of R&D for MMCs for BabyIAXO: 1.20(8)×10-4 cm-2 s-1 keV-1 [15]
ü statistics hints that background is still dominated by cosmic rays interactions

• Further improvement on the background level can be achieved by:
Ø Integrating an active shielding for cosmic ray rejection, such as Athena X-IFU Cryo-AC (factor 30 improvement expected) [16]
Ø Ad-hoc detector array and focal plane design, aided by simulations (xifusim, Geant4)
Ø Employing of materials with higher radio-purity
Ø Operation in dedicated underground facility
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σBG = 0.05×10-3 cm-2 s-1 keV-1 σBG = 0.2×10-4 cm-2 s-1 keV-1
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K = 2(4)×10-4 cm-2 s-1 keV-1

A = 2(1)×10-2 cm-2 s-1

m = 5.0(6) keV
s = 4(2) keV

K = 6(3)×10-5 cm-2 s-1 keV-1

A = 1.8(3)×10-3 cm-2 s-1

m = 2.6(2) keV
s = 1.2(2) keV
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