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The goal of the Qub-IT project is to realize an itinerant single-photon counter exploiting QND measurements and entangled qubits, in order to surpass current
devices in terms of efficiency and low dark-count rates. Such a detector has direct applications in Axion dark-matter experiments, which require the photon to
travel along a transmission line before being measured. The simulation phase of superconducting qubits devices is fundamental in order to converge to the
desired properties before moving to the manufactoring stage. The design and simulation of the first superconducting device consisting of transmon qubits

coupled to resonators is being performed with Qiskit-Metal (IBM) and Ansys HFSS.
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® Superconducting qubits: - Slightly anharmonic resonator
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@ Josephson junction: non linear inductance introducing
anharmonicity

® Transmon qubits: - Large anharmonicites
- Low sensitivity to charge noise
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superconducting qubits

The Qub-IT project
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® Main goal: Itinerant single-photon counter with low dark-count rates and high
efficiency based on superconducting qubits
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® Quantum systems can store the information of an interaction within the phase of
the state Quantum Non Demolition (QND) detection
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® Applications: Photon sensing for light dark matter candidates, such as Dark
Photons and axions (direct application in the QUAX experiment)

® Enhanced sensitivity: - QND detection — multiple
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measurements of the same photon
- entangled qubits — reduce dark
count rates and phase shift is
proportional to the number of
entangled qubits
photon.
® Fast High-Fidelity readout achievable with Traveling Wave Parametric Amplifiers

(TWPAs) developed within the @ DARTWARS €xperiment
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Example of a QND measurements with
localized photon device. The transmon
coupled to a large Q cavity allowed up
to 30 measurements of the same single
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A. V. Dixit et al., "Searching for dark
matter with a superconducting qubit,”

Phys. Rev. Lett. 126, 141302 (2021).

Design of the first chip
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superconducting circuit energy levels:
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Scheme of an itinerant photon
measurement with superconducting qubits.

Kono, S. et al. Quantum non-demolition
detection of an itinerant microwave
photon. Nature Phys 14, 546-549 (2018).
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Qubit-resonator simulation

® The simulations are performed with the Energy Participation Ratio
(EPR) method: Minev, Z.K. et al. Energy-participation quantization of
Josephson circuits. npj Quantum Inf 7, 131 (2021). https://doi.org/
10.1038/s41534-021-00461-8

® The electromagnetic fields and the eigenmodes of the circuit are
calculated with Ansys HFSS

® The EPR (Pm): fraction of the total inductive energy stored in the
non linear element (Josephson junction). It is calculated from the
electromagnetic fields simulated in Ansys HFSS
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Dispersive shift xy

® Knowing the EPR and the eigenmode frequencies, the total dispersive _ ,~’\_
shift, Lamb shifts and the anharmonicity of the modes are calculated *] /./' ‘-\
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