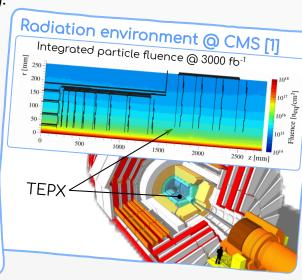
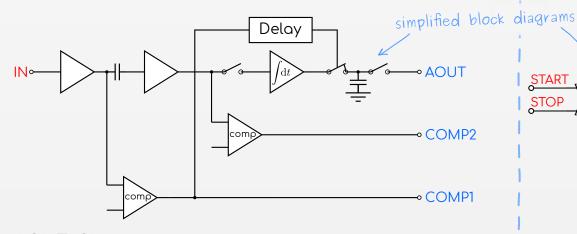
The project Implement a readout chip prototype with high granularity and timing capabilities to interface with 4D pixels for detection of MIP (Minimum Ionizing Particles).

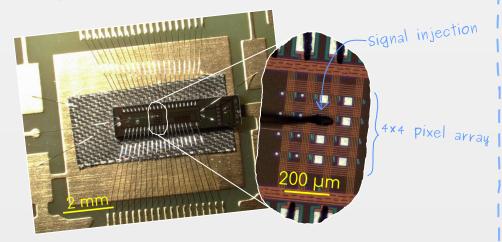

Forseen applications:

- Testing of prototype 4D sensors (LGADs)
- Potential use in CMS TEPX upgrade


#### Constraints:

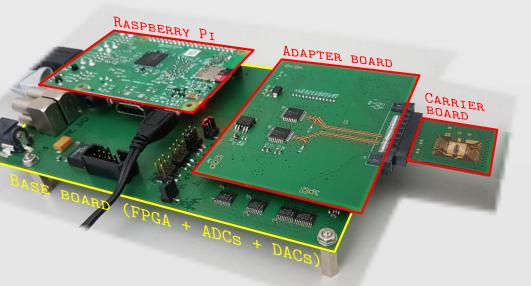
- Pixel size ≤ 100×100 µm²
- Pixel level time resolution ≤ 30 ps
- Power consumption ≤ 1 W/cm<sup>2</sup>
- Radiation hardness  $\geq 5 \times 10^{15} \, n_{eq}/cm^2$

# LGAD (Low Gain Avalanche Detector) [2] Drift area p\* gain implant p\* bulk p\*\* Gain: 10-100 Time resolution: 30-40 ps Radiation hardness ≥ 3×10<sup>15</sup> n<sub>eq</sub>/cm²

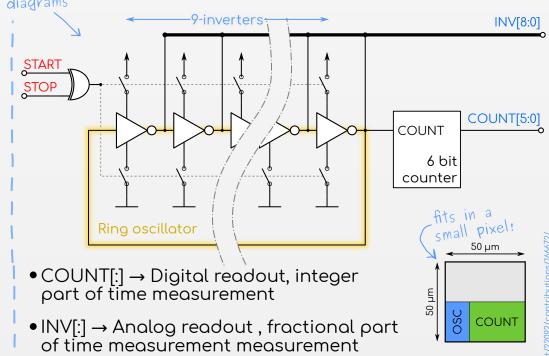



### Front end interface




- AOUT: Charge measurement
- COMP1 & COMP2: TOA (Time Of Arrival) & rise time measurements
  - ⇒ Constant fraction discriminator correction for Landau fluctuations

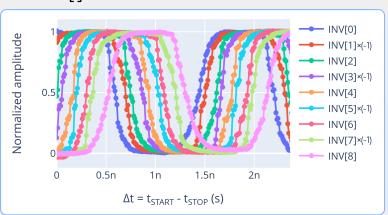
Prototypes produced in UMC 110 nm technology, still under test.




# Test setup

- Flexible design allows testing the two prototypes with the same "base board".
- Raspberry Pi: Allows easy automation and data acquisition.
- Base board: Flexibility to produce and read analog voltages and implement arbitrary fast logic.
- Adapter board: Specific interface required for each test structure (e.g. precise production of delay signals for the TDC test structures).
- Carrier board: Low cost board to mount the structures to test.




# Pixel level TDC




Prototypes produced in LFoundry 110 nm technology and tested.

# **TDC** results

Analog bus INV[:] measurements:



Time resolution depends on number of bits used to digitize INV[:] as shown below:



# Conclusions and outlook

- A front end and a TDC were designed and produced.
- The front end test structure is currently under test.
- The results from the testing of the TDC are very promising with a time resolution on the order of 10 ps.
- Next step is to assemble the full chain LGAD→front end→TDC and evaluate the performance.