
PM2022 - 15th Pisa Meeting on Advanced Detectors

R&D on organometal halide perovskites for photodetectors

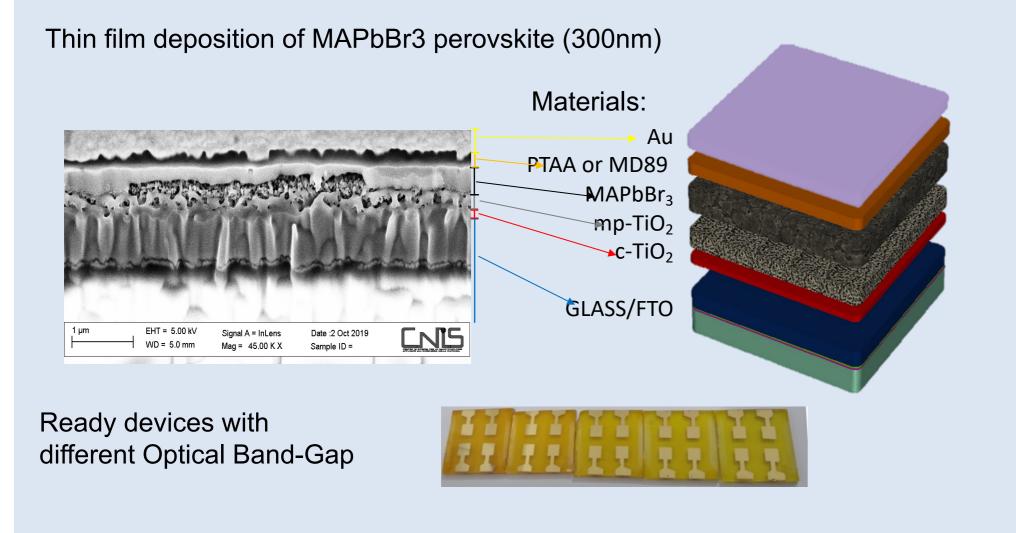
The organometal halide perovskites (OMHP) semiconductors are promising candidates for fast, sensitive and large area photodetectors. A gain in OMHP based detectors has been observed in several architectures, but usually in association with a slow time response. A model describing the underlying mechanics is still missing or at least incomplete. In this talk the state of art of the photo-detectors based on OMHP perovskites will be presented, and the activities carried on within the PEROV experiment as well. One goal of the PEROV project is to find out whether OMHPs exhibit an internal avalanche multiplication. Several CH₃NH₃PbBr₃ perovskite based devices have been developed, fabricated and characterized: film-based devices with 300 nm thickness and devices based on high quality single crystals with seeding techniques or with unconventional lithographic techniques, with thickness from microns to mm.

Organo Metal-Halide Perovskites (OHMP)

- **OHMP** are a class of hybrid organicinorganic semiconductor materials with a perovskite unit-cell structure ABX₃ with
 - A = CH₃NH₃⁺,B = metallic cation (Pb²⁺)
 - X= halide anions (Cl⁻, Br⁻, l⁻)

- OHMP combine advantages from organic and inorganic semiconductors
- Organic semiconductors:
- Disordered system
- Localized electronic states
- Hopping transport \Rightarrow low mobility
- Low cost, low temperature processing
- Can be solution processed
- Scalable to large area

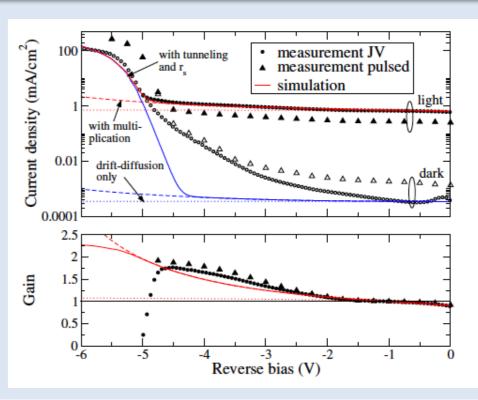
Inorganic semiconductors:

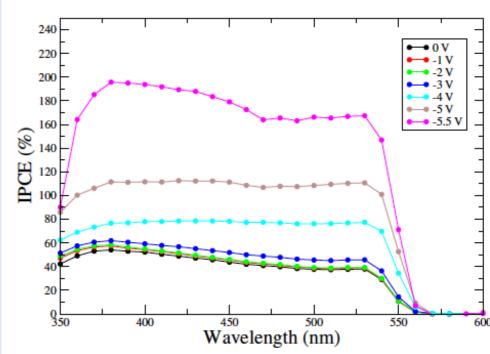

- Ordered periodic crystal ⇒ band structure
- Delocalized Bloch states
- band transport ⇒ high mobility
- Usually wafer based technology
- Costly, high temperature processes

- OMHP are emerging as new generation photovoltaic material
- promising candidate as <u>large area and flexible</u> sensitive photodetectors
 - \rightarrow interest for HEP detectors !
- OHMP band gap tunable changing halide (I,Br,CI)
- OMHP contain highly mobile defects and have instabilities issues

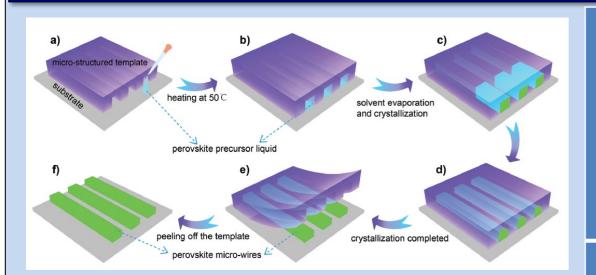
CH₃NH₃Pb(I,Br)₃ Silicon 4.15 g/cm³ Density 2.33 g/cm³ Band gap (eV) 1.12 (indirect) 1.5-1.6 / 2.24 (direct) < 70/190 1400 electrons Mobility (cm^2/Vs) holes 450 < 160/220 < 10⁴ Absorption (cm⁻¹) > 4x10⁴ Threshold operay for

impact ionization (eV)	1.2	~2 / 2.5 (estimated)
Mean free path (nm)	≤ 100	~100 (theory)


Film Based device

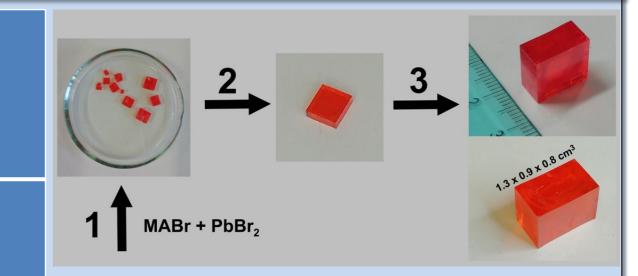


Pro:		Contra:	
•	Scalable to large area small transit time due to low thickness flexible substrate	•	polycrystalline grain boundaries large variability between samples

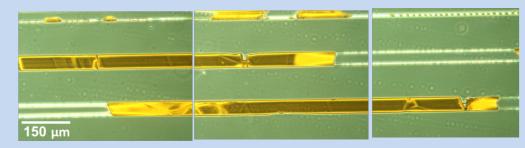

- Breakdown-like behavior at around -4–5 V
- Small amount of photocurrent gain Incident photon to current efficiency IPCE = J_{ph} hc / ($P_{in} \in \lambda$) ~ 2
- Developed phenomenological model to explain the observed reverse bias behavior and gain though
 - tunneling-assisted electron extraction at the TiO 2 /MAPbBr 3 interface
 - carrier multiplication
- Both processes mediated by the electric field due to *mobile ions Br-*
- Mobile ionic species in halide play an important role in photodetector and solar cell performance and stability
 - Not fully understood but critical

Appl. Phys. Lett. **120**, 113505 (2022)

Micro-channels



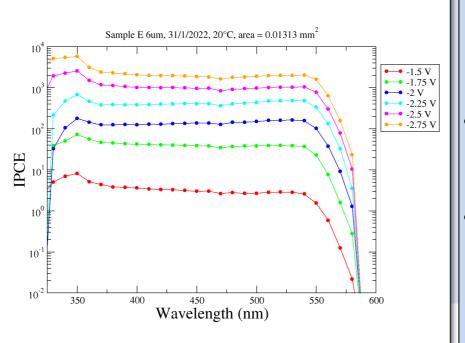
- Pro:
- large flexibility in dimension
- moderate area


Large Bulk crystals

Pro:

ideal for single crystal large
dimension, up to O(1) cm³

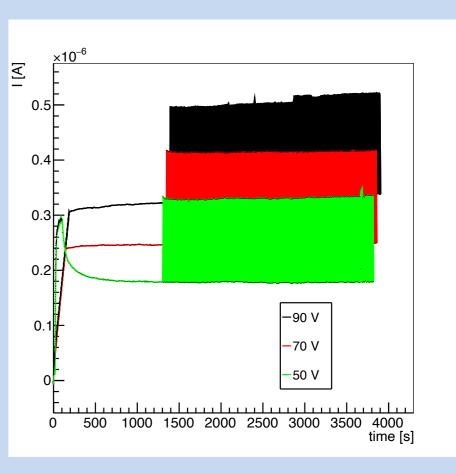
Typical dimension: W x L x H = $150 \ \mu m x 500 \ \mu m x 6(2) \ \mu m$



- Device realized with CH₃NH₃PbBr deposition on **patterned** Indium Tin Oxide/ CH₃NH₃PbBr₃ and Au evaporation
- Deposited patent: 102022000010469
- Gain observed at larger bias for thickness of 2 and 6 um

- pixelization
- flexible substrate
- Deposited directly on substrate

Contra:


 need high optimization of parameters (pressure, temperature,..)

low defects

Contra:

- No scalability to large area
- Need to be cut mechanically for low thickness
- Dimensions up to $1.0 \times 1.5 \text{ cm}^2$ and up to 0.5 cm thick down to $300 \mu \text{m}$ by cutting the crystals along one of the {100}cubic planes
- Device realized with Indium Tin Oxide / CH₃NH₃PbBr₃ / Au
- Stability response measured under 500 nm pulsed
 light illumination

Marianna Testa for the PEROV collaboration