

A Reconfigurable Detector for Measuring the Spatial Distribution of Radiation Dose for Applications in the **Preparation of Individual Patient Treatment Plans**

Maciej Kopeć¹, Tomasz Fiutowski¹, Paweł Jurgielewicz¹, Damian Kabat², Kamila Kalecińska¹, Łukasz Kapłon², Stefan Koperny¹, Dagmara Kulig², Jakub Moroń¹, Gabriel Moskal², Antoni Ruciński³, Piotr Wiacek¹, Bartosz Mindur¹, and Tomasz Szumlak¹

¹AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland ²Maria Sklodowska-Curie National Research Institute of Oncology Krakow Branch, Department of Medical Physics, Krakow, Poland ³Polish Academy of Sciences, Institute of Nuclear Physics, Krakow, Poland

European Union

Foundation for Polish Science

Overview

A reconfigurable Detector for Measuring the Spatial Distribution of Radiation Dose for Applications in the Preparation of Individual Patient Treatment Plans project aims to build a reconfigurable detector for the measurement of radiation dose spatial distribution. It is an extremely important field of study since cancer is one of the deadliest diseases worldwide, accounting for nearly ten million deaths in 2020 [1]. The better is our understanding of dose deposition in tissue, the more accurate patient treatment planning can be. As a result, chances of the patient's full recovery are increased, and potential excessive neighbouring tissue damage is reduced.

- Detection head allowing for changes in geometry dependant on patient's needs
- Scalable Data Acquisition (DAQ) system supporting reconfigurability
- High-level software package using machine learning techniques to analyse medical imaging and generate detector geometry for the configuration and simulations

High-level software and data analysis

- CT data segmented and classified using machine learning techniques
- Analysed data used to create an accurate detector geometry for:
 - the detector head
- Monte Carlo simulations
- Simulations enable precise therapy planning \Rightarrow see contribution Medical Imaging Data Analysis Using 3D Deep Learning Models Towards Improving the Individual **Treatment Plans**
- The detector verifies simulation results in situ

DAQ System

- Communication with different number of slices, depending on the needs possible [3] \Rightarrow see contribution A Modular Data Acquisition System for Reconstruction of Radiation Dose Spatial Distribution in **Radiotherapy Treatment Planning**
- Slices synchronised using Precision Time Protocol (PTP) to align the data in the time domain
- 8×8 multianode photomultiplier tube assembly used

Scintillators

3D-printed scintillator cubes of 10x10x10 mm³ to be used A comparison between commercial and 3D printed samples done [2]

References

- [1] Jacques Ferlay et al. "Cancer statistics for the year 2020: An overview". In: International Journal of Cancer 149.4 (2021). DOI: 10.1002/ijc.33588.
- [2] Dong-geon Kim et al. "Performance of 3D printed plastic scintillators for gamma-ray detection". In: Nuclear Engineering and Technology (). DOI: 10.1016/j.net.2020.05.030.
- [3] Paweł Jurgielewicz et al. "Modular Data Acquisition System for Recording Activity and Electrical Stimulation of Brain Tissue Using Dedicated Electronics". In: Sensors 21.13 (2021). DOI: 10.3390/s21134423.

Conclusion

3D printed scintillators offer needed performance DAQ system operational and first calibration done Detection system construction feasibility confirmed

European Union

European Social Fund

Acknowledgements

The POIR.04.04.00-00-15E5/18 project is carried out within the "TEAM-NET" programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund.

Paweł Jurgielewicz has been partially supported by the EU Project POWR.03.02.00-00-1004/16.

European Funds Knowledge Education Development

dose3d.fis.agh.edu.pl

maciej.kopec@agh.edu.pl