A reconfigurable detector for measuring the spatial distribution of radiation dose for applications in the preparation of individual patient treatment plans aims to build a reconfigurable detector for the measurement of radiation dose spatial distribution. It is an extremely important field of study since cancer is one of the deadliest diseases worldwide, accounting for nearly ten million deaths in 2020 [1]. The better is our understanding of dose deposition in tissue, the more accurate patient treatment planning can be. As a result, chances of the patient’s full recovery are increased, and potential excessive neighbouring tissue damage is reduced.

- Detection head allowing for changes in geometry dependant on patient’s needs
- Scalable Data Acquisition (DAQ) system supporting reconfigurability
- High-level software package using machine learning techniques to analyze medical imaging and generate detector geometry for the configuration and simulations

Overview

Dose reconstruction system

- Human-like phantom with tissue-like detectors
- Detector simulations
- Intelligent analysis based on Machine Learning
- Patient’s data

High-level software and data analysis

- CT data segmented and classified using machine learning techniques
- Analysed data used to create an accurate detector geometry for:
 - the detector head
 - Monte Carlo simulations
- Simulations enable precise therapy planning ⇒ see contribution Medical Imaging Data Analysis Using 3D Deep Learning Models Towards Improving the Individual Treatment Plans
- The detector verifies simulation results in situ

Scintillators

- 3D-printed scintillator cubes of 10x10x10 mm³ to be used
- A comparison between commercial and 3D printed samples done [2]

References

DAQ System

- Communication with different number of slices, depending on the needs possible [3] ⇒ see contribution A Modular Data Acquisition System for Reconstruction of Radiation Dose Spatial Distribution in Radiotherapy Treatment Planning
- Slices synchronised using Precision Time Protocol (PTP) to align the data in the time domain
- 8 x 8 multianode photomultiplier tube assembly used

Conclusion

- 3D printed scintillators offer needed performance
- DAQ system operational and first calibration done
- Detection system construction feasibility confirmed

Acknowledgements

The POIR.04.04.00-00-15ES/18 project is carried out within the “TEAM-NET” programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund.

Paweł Jurgielewicz has been partially supported by the EU Project P08BR.02.01-00-4407/16.