

A Reconfigurable Detector for Measuring the Spatial Distribution of Radiation Dose for Applications in the Preparation of Individual Patient Treatment Plans

Maciej Kopeć¹, Tomasz Fiutowski¹, Paweł Jurgielewicz¹, Damian Kabat², Kamila Kalecińska¹, Łukasz Kapłon², Stefan Koperny¹, Dagmara Kulig², Jakub Moroń¹, Gabriel Moskal², Antoni Ruciński³, Piotr Wiącek¹, Bartosz Mindur¹, and Tomasz Szumlak¹

¹AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
²Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology Krakow Branch, Garncarska 11, 31-115 Krakow,

Poland

³Institute of Nuclear Physics Polish Academy of Sciences, 31342 Krakow, Poland

Poster Summary

A novel detection system dedicated for personalised radiation therapy planning designed to have:

- a detection head allowing for changes in geometry dependant on patient's needs;
- a scalable Data Acquisition (DAQ)
 system supporting reconfigurability;
- a high-level software package using machine learning techniques to analyse medical imaging and generate needed detector geometry for the configuration and simulations.

dose3d.fis.agh.edu.pl maciej.kopec@agh.edu.pl