A Reconfigurable Detector for Measuring the Spatial Distribution of Radiation Dose for Applications in the Preparation of Individual Patient Treatment Plans Maciej Kopeć¹, Tomasz Fiutowski¹, Paweł Jurgielewicz¹, Damian Kabat², Kamila Kalecińska¹, Łukasz Kapłon², Stefan Koperny¹, Dagmara Kulig², Jakub Moroń¹, Gabriel Moskal², Antoni Ruciński³, Piotr Wiącek¹, Bartosz Mindur¹, and Tomasz Szumlak¹ ¹AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland ²Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology Krakow Branch, Garncarska 11, 31-115 Krakow, Poland ³Institute of Nuclear Physics Polish Academy of Sciences, 31342 Krakow, Poland ## **Poster Summary** A novel detection system dedicated for personalised radiation therapy planning designed to have: - a detection head allowing for changes in geometry dependant on patient's needs; - a scalable Data Acquisition (DAQ) system supporting reconfigurability; - a high-level software package using machine learning techniques to analyse medical imaging and generate needed detector geometry for the configuration and simulations. dose3d.fis.agh.edu.pl maciej.kopec@agh.edu.pl