Comparison of new SiPM models for applications in High-Energy physics

M. Bonesini1, A. Menegolli2,3, M.C. Prata3, G.L. Raselli3, M. Rossella3, R. Rossini2,3

1Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca (Italy)
2Università degli Studi di Pavia (Italy),
3Istituto Nazionale di Fisica Nucleare, Sezione di Pavia (Italy)

Silicon Photo-Multipliers (SiPMs) are widely used as light detectors for the new generation of experiments dedicated to high energy physics. For these reasons, we tested several recent devices from different manufacturers: Hamamatsu 13360-1350; Ketek PM1125; ONsemiconductors FC10035 and AdvanSid NUV4S-P. Particular emphasis has been put on measurements of dark counts and gain, performed at different temperatures by means of a climatic chamber (F.Lli Galli model Genviron-030LC) with a temperature range from $-60\,^\circ C$ to $+60\,^\circ C$, housing the SiPM under test. This latter also allowed evaluating the temperature coefficient of all models.