

Measurement of anomalies in the angular correlation of electron

and positron internally produced in excited ⁸Be and ⁴He

Frontier Detectors for Frontier Physics - 15th Pisa Meeting on Advanced Detectors 22th - 28th May 2022, La Biodola, Italy

A.F.V. Cortez | H. Natal da Luz | R. Sykora | B. Ali | L. Fajt

Institute of Experimental and Applied Physics, Czech Technical University in Prague Husova 240/5, 110 00 Prague, Czech Republic

Construction of a spectrometer for the tracking and measurement of the energy of light charged particles and study of the 8Be decay. The spectrometer will be composed of:

- Timepix3 (TPX3) [1]
- Multi-Wire Proportional Chamber (MWPC) [2]

Objective

Time Projection Chamber (TPC) [3]

Setup under construction at the IEAP's Van de Graaff accelerator facility.

Figure 1: 8Be decay reaction.

ATOMKI: Observed anomalies in e+e- emission from ⁸Be and ⁴He

ATOMKI Institute, in Debrecen, Hungary, measured a 6.80 anomaly in the opening angle of e+e- pairs produced in ⁸Be M1 transition to the ground state [4,5].

Possible explanations:

- Unidentified nuclear reactions;
- Experimental effects;
- Production of a new boson [6].

Independent measurements of such anomaly are crucial.

Figure 2: ATOMKI results show peaks in angular correlation and invariant mass where a monotonic behaviour is predicted by theory for both ⁸Be (Left) and ⁴He (Right).

IEAP Spectrometer – Optimization Studies

Timepix3 (TPX3)

- Event-driven pixelated detector (fast response);
- 256x256 55-μm pixels (high granularity);
- 1.6-ns time resolution;
- 14x14 mm² (fits inside the vacuum tube).

Figure 3: TPX3 triangle pilot experiment at Van de Graaff (Left and Centre). Data monitoring of the experiment (fluoride-containing compounds used as target – LiF/CeF₃) (Right). cluster size == 03

cluster size == 04

1st Prototype

- 10x10 cm² sensitive area;
- 3 mm drift volume;
- Standard triple-GEM;
- Strip readout (256 X, 256 Y);
- DAQ based on CERN's SRS with APV25 ASIC.

Figure 6: 1st prototype of the triple-GEM readout with APV25 (Left). X-ray image of the X17 mask acquired with the prototype (Right).

Implementation of the SAMPA

2nd Prototype

chip [7] with SRS (RD51/CERN).

- 10x10 cm² sensitive area;
- 8 cm drift volume;
- Standard triple-GEM;
- 120 pad readout;
- SAMPA integration in SRS DAQ.

Check the QR code for more details.

Figure 7: Upgraded prototype with SAMPA [7] (Left). Cosmic muon track recorded with the TPC prototype. See Poster "Operation of the SRS using the SAMPA chip: first results" from the Front-End, Trigger, DAQ Session (Right).

cluster size == 08

Figure 4: Projection of the e+e- tracks in one of the detectors.

Vacuum tube Drift cathode **MWPC Target** Drifting electrons Ar/CO Timepix 3 Readout plane H⁺ beam

3D tracking (event topology);

charge drift time;

readout plane;

XY position given by the

• Z coordinate given by the

- Particle ID;
- Background rejection.

Figure 8: Working principle of the TPC prototype (with a triple-GEM readout).

Delay line position encoding;

Figure 10: CAD and picture of the spectrometer currently under construction at the IEAP's Van de Graaff facility.

- [1] T. Poikela et al., JINST 9 (2014) C05013 [2] G. Charpak et al, Nucl. Inst. Meth. **S62** (1968) 262-268 [3] D. Nygren and L. Marx, Physics Today **31** (1978), 46
- [4] A.J. Krasznahorkay et al., Phys. Rev. Lett. 116 (2016) 042501 [5] A.J. Krasznahorkay et al, J. Phys.: Conf. Ser. **1643** (2020) 012001 [6] J.L. Feng et. al., Phys. Rev. D **95** (2017) 035017
- [7] H. Hernández et al., IEEE Trans. Inst. Meas. **69** (2020) 2686

