High resolution filtering and digitization system for cryogenic bolometric detectors

P. Carniti
C. Gotti

G. Pessina

Next generation 0υ2β bolometric experiments

Next generation experiments for the search of neutrinoless double beta decay ($0\nu2\beta$), like **CUPID** or **CROSS**, will greatly improve their sensitivity by introducing **particle identification techniques** to reject α background in the region of interest.

The most promising technique is the detection of **scintillation light** by coupling a scintillating crystal containing the $0\nu2\beta$ candidate to a Ge or Si light-to-phonon detector, thus read out with the same bolometric technique as the crystal.

The lower amount of light produced by α particles with respect to β/γ allows them to be identified and rejected.

Other improvements will consist in the adoption of **high Q-value** $0\nu2\beta$ candidates, like 100 Mo (Q \sim 3 MeV), the use of **en-riched crystals**, higher active mass, and others.

New challenges on the readout

Light signals will have rise time **below 1 ms**, much faster than heat signals in the main crystal. In addition to that, 100 Mo has a **high pile-up rate** due to $2v2\beta$ background.

This will pose new challenges on the readout:

- □ **Higher bandwidth:** the spread in the detector characteristics requires adjustable analog cut-off frequencies, up to 2 kHz, and sampling rates, up to 10 ksps.
- □ **Higher resolution:** the adoption of light detectors, which have lower baseline noise, and a quieter cryogenic setup will require a readout with lower noise and higher resolution.
- □ **Lower power and space:** channels will triplicate from previous experiments, so power and space must be reduced.

Low pass filter and digitization board

Figure 1: Photo of the low pass filter and DAQ board (12 channels)

Figure 2: Analog filtering block with programmable cut-off frequency

The board has 12 channels, each one equipped with a 6-pole Bessel-Thomson low pass filter with 10-bit **digitally selectable cut-off frequency** from 24 Hz up to 2.5 kHz. The board is equipped with 24-bit $\Delta\Sigma$ ADCs which are able to digitize the signals up to **25 ksps** per channel in 12-channel mode or 250 ksps in 6-channel mode.

Channels	12
Power supply	± 12 V, + 5.5 V
Power consumption	250 mW/channel
Filter	6-pole Bessel-Thomson
Cut-off frequency	24 Hz - 2.5 kHz
Cur-off frequency resolution	10 bit
Input differential signal	± 10 V
Gain	1 V/V
Noise (analog)	< 7 μV RMS
PSRR (DC to 10 kHz)	-70 dB
CMRR (DC to 100 Hz)	-70 dB
ADC resolution	24 bit
Maximum sampling frequency	25 kHz (250 kHz with 6 ch.)
Cumulative sampling frequency	1.5 MHz
Effective resolution (1 kHz)	22 bits
Effective resolution (5 kHz)	21.3 bits
Effective resolution (25 kHz)	19.7 bits
Offset drift	10 μV/°C (1 ppm/°C)
Gain error (calibrated)	20 ppm
Gain drift	10 ppm/°C

Table 1: Specifications and performance

Selected measurements

Boards were fully qualified both on the analog part and on the digital part. The system (FPGA included) requires **250 mW/channel** with grounded inputs and 337 mW/channel with 5 V DC input signal.

Figure 5: Common mode rejection ratio at different cut-off frequency settings

Figure 6: THD+N as a function of signal amplitude, signal 440 Hz and 10 ksps

Data transfer and slow control

An FPGA module (Enclustra Mars MA3) manages the **continous data stream through UDP** (RTP) to the storage system. Slow control server is based on Python and ZeroMQ, running on the **FPGA SoC**.

Figure 7: Back-end block schematic

Figure 8: Full crate with 16 boards (192 channels)