High resolution filtering and digitization system for cryogenic bolometric detectors

Next generation 0ν2β bolometric experiments

Next generation experiments for the search of neutrinoless double beta decay (0ν2β), like CUPID or CROSS, will greatly improve their sensitivity by introducing particle identification techniques to reject a background in the region of interest. The most promising technique is the detection of scintillation light by coupling a scintillating crystal containing the 0ν2β candidate to a Ge or Si light-to-phonon detector, thus read out with the same bolometric technique as the crystal. The lower amount of light produced by a particles with respect to β/ν allows them to be identified and rejected. Other improvements will consist in the adoption of high Q-value 0ν2β candidates, like 106Mo (Q ~ 3 MeV), the use of enriched crystals, higher active mass, and others.

New challenges on the readout

Light signals will have rise time below 1 ms, much faster than heat signals in the main crystal. In addition to that, 106Mo has a high pile-up rate due to 0ν2β background. This will pose new challenges on the readout:

- **Higher bandwidth:** the spread in the detector characteristics requires adjustable analog cut-off frequencies, up to 2 kHz, and sampling rates, up to 10 ksp/s.
- **Higher resolution:** the adoption of light detectors, which have lower baseline noise, and a quieter cryogenic setup will require a readout with lower noise and higher resolution.
- **Lower power and space:** channels will triplicate from previous experiments, so power and space must be reduced.

Data transfer and slow control

An FPGA module (Encultra Mars MA3) manages the **continuous data stream through UDP (RTP)** to the storage system. Slow control server is based on Python and ZeroMQ, running on the **FPGA SoC**.

![Backpanel](image)

Selected measurements

Boards were fully qualified both on the analog part and on the digital part. The system (FPGA included) requires **250 mW/channel** with grounded inputs and 337 mW/channel with 5 V DC input signal.

Low pass filter and digitization board

The board has 12 channels, each one equipped with a 6-pole Bessel-Thomson low pass filter with 10-bit **digitally selectable cut-off frequency** from 24 Hz up to 2.5 kHz. The board is equipped with 24-bit ΔΣ ADCs which are able to digitize the signals up to **25 ksp/s** per channel in 12-channel mode or 250 ksp/s in 6-channel mode.

Channels

<table>
<thead>
<tr>
<th>Channel</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Power supply</td>
</tr>
<tr>
<td>12</td>
<td>Power consumption</td>
</tr>
<tr>
<td>6-noe</td>
<td>Filter</td>
</tr>
<tr>
<td>10</td>
<td>Cut-off frequency</td>
</tr>
<tr>
<td>10</td>
<td>Cut-off frequency resolution</td>
</tr>
<tr>
<td>10</td>
<td>Input differential signal</td>
</tr>
<tr>
<td>3</td>
<td>Gain</td>
</tr>
<tr>
<td>7.5</td>
<td>Noise (analog)</td>
</tr>
<tr>
<td>70</td>
<td>PSRR (DC to 1 kHz)</td>
</tr>
<tr>
<td>70</td>
<td>CMRR (DC to 100 Hz)</td>
</tr>
<tr>
<td>24</td>
<td>ADC resolution</td>
</tr>
</tbody>
</table>

Maximum sampling frequency

25 kHz (250 kHz with 6 ch.)

Cumulative sampling frequency

1.5 MHz

Effective resolution (5 kHz)

22 bits

Effective resolution (5 kHz)

21.3 bits

Effective resolution (25 kHz)

19.7 bits

Offset drift

10 μV/°C (1 ppm/°C)

Gain error (calibrated)

20 ppm

Gain drift

10 ppm/°C

| Table 1: Specifications and performance |

![Backpanel](image)

Figure 2: Analog filtering block with programmable cut-off frequency

![Backpanel](image)

Figure 3: Analog filter transfer function at different cut-off frequency settings

Figure 4: Analog noise spectra at different cut-off frequency settings

Figure 5: Common mode rejection ratio at different cut-off frequency settings

Figure 6: THD+N as a function of signal amplitude, signal 440 Hz and 10 ksp/s

Figure 7: Back-end block schematic

Figure 8: Full crate with 16 boards (192 channels)

15th Pisa Meeting on Advanced Detectors - PM2021
La Biodola, Isola d’Elba (Italy), 22-28 May 2022