

The Silicon Microstrip Tracker for the Mini.PAN experiment

Maria Movileanu - Ionica, On behalf of PAN Collaboration

Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Italy

Mini.PAN Project TRACKER goals

- Validate a novel cosmic ray measurement instrument concept
 - Develop a fine pitch silicon strip detector for the advanced option of the Strip X Detector
 - Design and produce large pitch Strip Y detector
 - Design and produce low noise and low power ASIC chips for Strip X detectors
 - Develop ASIC chips for Strip Y detectors, with large dynamic range, multi-range
 - readout, trigger output and good time resolution
 - Design, produce and space qualify tracker modules

Mini.PAN Silicon TRACKER

- Three Tracker Modules. Each module made of:
- Two Strip-X detectors with 25µm readout pitch, providing a 2µm spatial resolution, read-out by 32 IDEAS VA1140 \rightarrow 2048 readout channels
- One Strip-Y detector with 400µm readout pitch, providing 115µm spatial resolution read-out by one high dynamic range VATA GT7.2 chip \rightarrow 128 readout channels

Detector Construction Steps:

Alignment of PCB on a precise jig

- Thin silicon strip sensor: 150µm
- Pitch adapter to fan-out to bonding pads directly implemented on the silicon wafer with double metal layer
- Low noise ASIC and analog readout
- Robust module design and assembly
- Thermal/mechanical system that ensures stability during operation
- Tracker power consumption 8W

PAN Silicon sensors characteristics

Device type	Single side AC-readout /double metal
Silicon Type	N-type, Phosphorus doped
Crystal orientation	<100>
Chip thickness	150 ± 15 μm
Front and back side metal	AL
Full depletion voltage	Max. 50 V

Strip X sensor properties.

X sensor overall size	59000±20 μm x 59000±20 μm
Active area	51200 μm x 51200 μm
Number of Strips	2048
Strip pitch	25 μm
Strip width	13 µm
Readout AL width	10 µm
Readout PAD pitch	96 μm

Strip Y sensor properties.

Y sensor overall size	59000±20 μm x 59000±20 μm
Active area	Circular with D=51200 μm
Number of Strips	128
Strip pitch	400 μm
Strip width	380 μm
Readout AL width	10 μm
Readout PAD pitch	91.2(2lines) μm

Dispensing of conductive glue EJ2189 and structural glue DC3145 grey

- Placement of silicon sensor on PCB and curing
- Wire bonding of sensors with the VA1140, respectively VATAGP7.2
- Qualification: electrical and mechanical test
- Integration of Strip-X and Strip-Y detectors in Tracker Modules
- Integration of Modules in Tracker
- **Beam Tests and Space Qualifification**
- 8 Strip-X detectors and 3 Strip-Y detectors already built

Strip Y detector readout by a VATAGP 7.2

Ultrasonic wire bonding with a M17L F&K Delvotec machine

Strip X detector calibration: standard deviation of ADC values per channel from a calibration run (CN subtracted): ~1.5-2.5 ADC units

Space Qualification – Mechanical Tests

A Mechanical Tracker Module was built for space qualification with dummy X and Y sensors, respectively

ACKNOWLEDGEMENTS: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862044.

interplanetary missions, This Conference

DISCLAIMER: All views and opinions expressed on this poster are those of the authors and do not necessarily reflect the official policy or position of any other agency, organization, employer or company. In particular the European Commission is not responsible for any use that may be made of the information hereby contained.

15th Pisa Meeting on Advanced Detectors, La Biodola, Isola d'Elba, Italy, May 22-28, 2022