The front-end electronics upgrade of the CMS ECAL Barrel Fabio Cossio (INFN Torino) on behalf of the CMS Collaboration PM2021 – 15TH Pisa Meeting on Advanced Detectors – 22-28 MAY 2022 #### Introduction #### The CMS Electromagnetic CALorimeter (ECAL) Compact, homogeneous and hermetic high-granularity crystal e.m. calorimeter based on scintillating crystals - 61.2k (Barrel) + ~14.6k (Endcaps) **PbWO**₄ **crystals** - $t_{75\%} = 25 \text{ ns}, X_0 = 8.9 \text{ mm}, r_M = 2.19 \text{ cm}$ #### **ECAL Barrel** - APD sensors readout - 36 supermodules, 1700 crystals each - 2448 readout units, made of **5x5 crystals** - 5 VFE cards/unit, 5 channels/VFE - Multi Gain PreAmplifier (MPGA) x1, x6, x12 gain, CSA + 40ns RC-CR shaper - 12-bit, 40 MS/s ADC, dynamic range 40MeV 1.5TeV # Preshower Barrel Endcap #### **HL-LHC ECAL Upgrade** - Design luminosity: 5–7.5 x 10³⁴cm⁻²s⁻¹ - High pileup: 140–200 p-p interactions in a single Bunch Crossing - x10 design integrated luminosity Radiation-induced detector ageing affects crystal transparency and APD dark current - ➤ ECAL Endcap: replace with a completely new detector (HGCAL) - ➤ **ECAL Barrel**: reduce operating temperature from 18°C to 9°C to mitigate APD leakage current and increase light yield (keep crystals and APDs) #### **ECAL Barrel Electronics Upgrade** **ELECTRONICS** **LEGACY** Redesign of VFE, FE and off-detector electronics to cope with new CMS trigger and DAQ requirements: - L1 trigger latency: $4.5 \mu s \rightarrow 12.5 \mu s$ - L1 trigger rate: 100kHz → 750kHz - Trigger granularity: 5x5 crystals → one crystal Two new, cascaded ASICs for faster FE electronics: Lower APD noise from leakage current PLL - Precision time measurement (30 ps resolution for H \rightarrow γ γ photons) for improved primary vertex identification and reduced pile-up - Better rejection of APD "spikes" → on the fly pulse shape discrimination #### **Front-end Electronics** Phase-I (CMS in-situ) 8.0 0.6 0.4 #### **CATIA: Calorimeter Trans-Impedance Amplifier** Single sensor readout system chip based on Trans-Impedance Amplifier (TIA) - Designed by CEA Saclay, 130 nm CMOS technology - RCG input stage \rightarrow very low Z_{in} and 35 MHz bandwidth - **Dual gain**: 10x and $1x \rightarrow 50$ MeV -2 TeV dynamic range ### **LiTE-DTU: Lisboa and Torino ECAL Data Transmission Unit** #### 2x 12-bit, 160 MS/s ADCs - IP block from commercial company - time-interleaved 80 MHz SAR ADCs - ENOB: 10.2 @ 50 MHz #### **Lossless data compression** - 6 bits for signals < 2.4 GeV - bw occupation: 2.08 Gb/s \rightarrow 1.08 Gb/s - fit in one lpGBT e-link (1.28 Gb/s bw) - latency < 350 ns PLL block from lpGBT to generate 1.28 GHz clock 65 nm CMOS technology TID tolerance up to 20 kGy SEU-protected logic #### **Conclusions and Outlook** The challenging conditions of HL-LHC require a complete re-design of the CMS ECAL Barrel electronics - Faster FE electronics (4 x bandwidth, 4x sampling rate) \rightarrow 3 0 ps time resolution, PU effects mitigation and "spikes" suppression - L1 trigger hardware moved off-detector for maximum flexibility \rightarrow single crystal granularity Very good performance already from ASICs prototype versions Integration tests of ECAL Barrel electronics show good compatibility Promising results from first tests of pre-production ASICs with improved performance and new features Preparation for integration tests at larger scales: ~400 channels system for Fall 2022 test beam ASICs mass production foreseen in 2022-23 Full installation during LHC Long Shutdown 3 (2024-2026) CATIA cutoff frequency