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technology. The u-RWELL is a reliable, cost effective, easily scala
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The goal of the uRANIA-V (u-RWELL Advanced Neutron Imaging Apparatus) project is the development of an innovative thermal neutron detector based on micro-Resistive WELL (u-RWELL)

easily detected in the active volume of the device. Results from tests performed with different converter layouts show that a thermal neutron (25meV) detection efficiency between 5+10% can
be achieved with a single detection layer. A detailed comparison between the experimental data and the full simulation of the neutron physics and the detector behaviour has been performed.

ble, resistive MPGD. A thin layer of 1°B4C on the cathode surface allows the thermal neutron conversion into ’Li and a ions to be
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of the neutrons are absorbed
by the mechanical
structure of our
detectors.

The p-RWELL detector...
-With a planar converter

The p-RWELL is a resistive Micro Pattern Gaseous Detector
(MPGD): compact, spark protected and with a single amplification
stagel!l, Key points of the technology are the scalability as well as
he mechanical flexibility that allows to adapt the design to different
geometries and applications. The cathode, sputtered with °B,C, is ___nlus 9 mesh converter .
used as a neutron converter: the charged ions produced ionize the -
gas in the drift gap. Applying a suitable voltage between the top Cu-
layer and the DLC the WELL acts as a multiplication channel for the
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This converter exploits a 1°B coated metallic mesh
inserted in the gas gap between the standard planar
(1°B coated) cathode and the PCB-RWELL.

increase the coated

ionization produced in the conversion/drift gas gap.

surface with a folding ;,\‘. — A WELL patterned
structure with a slope & Copper 5 pm kapton foil acting as
of 10°, a variable — an N\ o .) amplification stage Copper ~ 56um  190pm 60%
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. lonization extraction for SITTLE focus on the region The optical trasparency, affecting the number of electrons
0.25+1mm denser schemes Gain passing through the mesh, is a crucial parameter to be
_ ol optimized without reducing too much the boron coated surface.
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The current flowing through the resistive layer of the u-RWELL is proportional to the number of — T Data current mesh INENN « For the planar cathode a
electrons released in the gas and the detector gain. In the equations i is the current, ® the ? 5f—| * Datacounting picoscope groove scan for different 1°B
neutron flux, & the neutron conversion efficiency, N the average number of ionization electrons, 2 - EEIZEEEEEE Z'Eiiii lg);gg;rre thickness has been performed
G thg .detector gain and S the' deteqtqr surface. With a 50pA sensitivity current meter it was D 4[| ® Datacounting picoscope planar in current mode, measuring
possibile to extract the conversion efficiency, the only unknown parameter. i3 - | (D}aEt;;uTrzegailsfar an efficiency = 1.5~2.0%
. _— N HOTNES It * The planar coated cathode +
For the planar and grooved cathodes The mesh setup has four different contributions. 3 results | . : L
the onl 0L . u 2 coated mesh configuration in
y current contibution came catmose +8oon  For @@ and @ the mesh! B % (100meV neutrons) ¢ mode exhibit
from the coated cathode. electron trasparency . current mode exniol Soan
N\ Al | (Telec, from simulation) 2 - ] . 'T'Eﬁec Iceonucrzlt i(:]fq4r;1601diel.0 o
has to be taken into - F 1 for the bl
) ccount E measurements for the planar
I T 4 9 ' - and grooved cathode layouts
b = . - show the following results:
o I'. -II Vo I, I'-I o 'L:]_ — P x £1 X Nl % G X S % Telec 0 |1.5| [ 5 [ |2'5| L1 3 L1 |3'5| L1 i L1 |4'5| 1 ° Planar - 2.1910.05%
h /]| @ ia=®xeax NyxGx S : Boron Thickness [pm] + Grooved - 2.61x0.06%
, Thermal neutrons conversion L
. 0 i3 =®xezx N3 x G x5 The neutron capture cross section depends on the neutron
3 §' ::o ig =P xeg X Ny X G XS X Tepec °. energy. As shown by GEANT4 simulations, with respect to the HOTNES spectrum, the
| i detection efficiency for the thermal neutron (25meV) increases by a factor of two,
thus corresponding to a thermal neutron efficiency ranging from 5 to 10%.




	Diapositiva 1

