

The DarkSide-20k Neutron Veto and its Light Detector Daria Santone, RHUL On behalf of the DarkSide-20k collaboration

DarkSide-20k Experiment

A global liquid argon dark matter experiment which aims to reach high WIMP mass sensitivity (1.5 x 10⁻⁴⁷ cm²) in a background free environment.

Neutron veto: TPC-veto Integrated System

Neutron capture on Gd produces a gamma cascade (8 MeV). Generates scintillation light in argon detected by veto photo detection unit (vPDU). vPDU

- 16 Tiles
- Single PCB for Tile & amplifier + 1 large PCB for control signals

ASIC amplifier

 Sum of 4 amplified tile signals,4 outputs

Neutron Veto Performance

Monte-Carlo simulation, including PDU performance, develop to study neutron veto

inefficiency is

Neutron background reduction:

- Single nuclear recoil selection
- Position cuts
- Energy in TPC > 50 keV OR energy in the veto > 200 keV

MC-truth PE

reco PE

Photo-electron (PE) distribution in the veto

