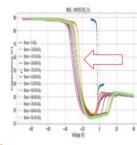
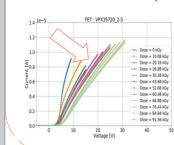
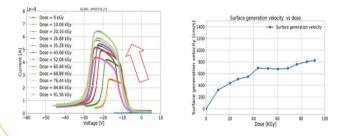


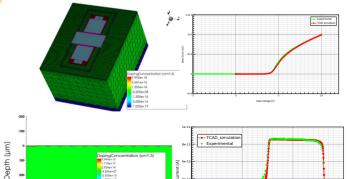
Study of p-type silicon MOS, GCD and FET structures irradiated with a ⁶⁰Co gamma source at HL-LHC radiation levels and TCAD simulations. P. Assiouras, I. Kazas, A. Kyriakis, D. Loukas

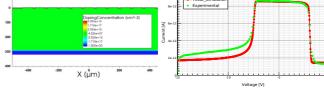


- Irradiation studies with C-60 gamma photons (~ 100 kGy). Comparable with the radiation exposure of Outer Tracker layers of ATLAS/CMS at HL-LHC.
- Picker therapy unit used as Co-60 source
 - Dose rate = 0.96 kGy/h
 - During irradiation, the samples were cooled down to (at8±0.5 ° C)
- Automatic probe station (Carl Suss PA 150) for electrical characterization of microelectronic devices
- Environmental conditions are constantly monitored:
 - Relative humidity < 30%
 - Temperature fixed at 20


 C
- Test structures fabricated on 6[°] wafers; thinned at 290 μm produced by Hamamatcu
- Each test structure contains among others a MOS, GCD and FET
- Measurement configuration:
 - <u>MOS capacitor</u>: oscillation level = 250 mV, frequency = 10 kHz, waiting time = 0.5s
 - <u>GCD:</u> diode bias varying from -5 to -11 V, waiting time = 0.5s
 - <u>FET:</u> V_{DS} 100 mV, waiting time = 0.5s


- <u>MOS</u>: The flatband voltage $(V_{fb} \propto N_{ox})$ shifts to higher absolute values with due to the increase of the effective oxide concentration
 - Clear evidence of positive charge induced in the oxide of the MOS capacitor after exposure to gamma photons




- <u>FET:</u> Shift of the slope of the IV curve
 - Threshold voltage almost stable. Good quality of channel isolation
 - Mobility degradation due to charged trapped close to the interface
 - Maximum tranconductance decreased, due to reduction in mobility+++

- <u>GCD:</u> Increase of surface generation current due to radiation-induced defects in the interface
 - Surface generation velocity $(S_{_0})$ and surface current $(I_{_s})$ increase with total irradiation dose $(S_{_0} \propto D_{_{it}})$

