

Time calibration, monitoring and performance of the ATLAS Tile Calorimeter in Run 2

Kristina Mihule, on behalf of the ATLAS collaboration

Charles University, Prague

The Tile calorimeter

Time calibration

- Time calibration adjusts the phase of the sampling clock to the peak of the signal produced by the traversing particle.
 - The signal phase $t_0 \sim 0 \rightarrow$ the amplitude is properly reconstructed.
 - Time measurement is used for time-of-flight studies, non-collision background removal.

- Before Run 2 physics collisions, time calibration was performed with high-energy muons in splash events.
 - Time calibration constants = the average reconstructed time + corrections for time-of-flight.

- The TileCal is the central hardonic calorimeter at the ATLAS experiment (LHC), covering $|\eta| < 1.7$.
- Provides data for reconstruction of jets, τ_h , hadrons, and missing transverse energy.
- Assists in muon identification.
- A sampling detector: steel and plastic tiles.
- Charged particles passing through the tiles produce the light transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs).
- Comprises 5182 cells, a cell is typically read out by two PMTs (channels).
- The signal is passed to front-end electronics for shaping, amplification (2) gains, 1:64 ratio), and digitization (10-bit ADC).
- The Optimal Filtering algorithm reconstructs the signal amplitude and phase based on 7 digitized samples.
- The deposited energy is evaluated based on the reconstructed amplitude.

Time calibration monitoring

- Time calibration monitored with two independent methods:
- with reconstructed jets in physics data
- in response to laser pulses emitted during empty bunch-crossings.
- Time offsets above 3 ns were identified and promptly addressed before full ATLAS data processing.
- The readout gains with time instabilities \rightarrow recalibrated or vetoed for usage in timing-sensitive studies.
- Monitoring with laser per Luminosity Block (LB) \rightarrow biases are corrected in affected LBs.

z [mm]

- The final calibration was derived with first proton-proton collision data.
 - The time distribution in jet-associated cells \rightarrow Gaussian mean = a calibration constant.
 - Channels with $2 < E_{ch} < 4$ GeV are exploited for high gain (HG) calibration.
 - HG calibration + correction for faster signal propagation in low gain (LG) and the time on dependency on measured energy \rightarrow low gain (LG) calibration.
- The LG calibration was fine-tuned in high-energy channels $15 < E_{ch} < 50$ [GeV] in 2016-18.
- Maintenance campaigns during technical stops \rightarrow components replacement \rightarrow time constants in affected channels were adjusted w.r.t. the time offsets seen in laser events.
- Majority of time calibration fluctuations were traced to electronic components problems.
 - Damage of a 3-in-1 card due to overcurrent \rightarrow reconstructed phase and amplitude change in the related channels.

Bunch-crossing time offsets in a group of three channels (coupled to the same Data) Management Unit).

- Improved stability of electronics in Run 2 \rightarrow lower in Run 1 rate (\sim a dozen per year) of "time jumps" (changes of time settings for 6 channels related to the same digitizer).
- Each year, time calibration was revised at the end of data-taking year \rightarrow precise conditions for data reprocessing.

▼ 2018

0.5

- The TileCal time performance was stable throughout Run 2.
- The mean cell time depends on the deposited energy due to different dynamics for fast and slow components of hadronic showers.
- Fluctuations of the mean time during Run 2 is within 0.05 ns.
- The time resolution raised by $\sim 10\%$ in cells $E_{cell} < 20$ GeV due to higher pile-up since 2016.
- In cells with $E_{cell} > 4$ GeV, the time resolution is below 1 ns.
- An improved procedure for low-gain calibration resulted in 5% better resolution in 2016-18.
- The low-gain resolution constant term approaches \sim 0.4 ns.

References:

[1] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TileCaloPublicResultsTiming [2] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsTile [3] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/PublishedTilecalFigures

kristina.mihule@cern.ch

The 15th Pisa Meeting on Advanced Detectors

-0.5

--- EBA

-B-EBC

100

La Biodola – Isola d'Elba