

Contribution ID: 114 Type: Poster

Development and Characterization of CMOS Sensor for High Energy Hadrons for radiation therapy applications

Tuesday, 24 May 2022 08:38 (1 minute)

The current prototype for the proposed sensor was developed in 180nm TSI HV-technology with a 24x40 pixel matrix. Single pixels exploit deep nwells on p-substrate diodes. Secondary particles are collected on the deep n-wells which include the front-end pixel electronics. Front-end electronics contains an integrator in addition to a comparator. Each time the charge acquired surpasses the threshold of the comparator a pump pulse is generated and counted into an 8-bit register, and the integrator is reset. By storing an 8-bit timestamp of the first and last pump, it is possible to obtain with presition the charge acquired during the integration time. A 16-bit output resolution is achieved by this Pump-timestamp method, which is converted into 2 LWDS lines with 4 bits in parallel, to increase data transfer speed, as well as to maintain the integrity of the output. Preliminary tests shown a noise floor of 0.8 fC with a maximum charge of 3000 fC, limited by the resolution bits. The sensor presents a linear response along the whole dynamic range. A test with a high energy particles beam was carried out, the results show the performance of the sensor under real life conditions, as well as the radiation hardness capabilities of it.

Collaboration

Primary authors: MATEOS, Horacio (KIT); Prof. PERIC, Ivan

Presenter: MATEOS, Horacio (KIT)

Session Classification: Solid State Detectors - Poster session