

Performance of Highly Irradiated FBK 3D and Planar Pixel Detectors

Rudy Ceccarelli on behalf of the CMS Tracker Collaboration

Overview

• Two types of pixel sensors are considered for the future CMS Inner Tracker, during High Luminosity LHC:

Traditional planar pixel sensors

Bump Pad

Efficiency [%]

• 3D pixel sensors \rightarrow **Higher radiation resistance,** but difficult and expensive production

Very high TID!

More details on the future

CMS Inner Tracker in

Antonio Cassese's

- The baseline pixel geometry is $25 \times 100 \ \mu m^2$ with $150 \ \mu m$ active thickness
- Pixel sensors studied for this work, both 3D and Planar, were developed in a collaboration between INFN and FBK Foundry
- The pixel sensors were interconnected (though bump-bonding) with the RD53A readout chip
 - The pixel modules were tested on beam at DESY, after being irradiated up to $24 \times 10^{15} \; n_{eq} cm^{-2}$ (using 23 MeV protons at KIT)

Bias Voltage [V]

Dashed lines refer to measurements with

Irradiated Planar Pixel Modules

- Four irradiated planar pixel modules were tested on DESY beam
 - Two with the "standard" design and two with the "bitten" design -
- In order to reach a hit detection efficiency > 98%:
 - $V_{\rm bias} > 200 \, \text{V}$ after a fluence of $7 \times 10^{15} \, \rm n_{eq} cm^{-2}$
- Reduced
 Cross-Talk effect!
- $V_{bias} > 500 \text{ V}$ after a fluence of $24 \times 10^{15} n_{eq} \text{cm}^{-2}$
- Planar pixel modules can survive HL-LHC Runs 4+5 (2200 fb^{-1}) ...
 - ...in the innermost tracker layer (only 3 cm from the beam line)
 - However, very high bias voltages are required
 - Cooling becomes challenging, especially in the innermost tracker layer

3D pixel modules are now the baseline option for this region

Irradiated 3D Pixel Modules

- Three irradiated 3D pixel modules were tested on DESY beam
- In order to reach a hit detection efficiency > 98%:
 - $V_{\rm bias} > 110 \text{ V after a fluence of } 15 \times 10^{15} \, \rm n_{eq} cm^{-2}$
 - $V_{\rm bias} > 160 \text{ V}$ after a fluence of $18 \times 10^{15} \, \rm n_{eq} \, cm^{-2}$
- A sudden increase in the number of noisy channels was observed...
 - ...at high bias voltages (greater than $130 170 \,\mathrm{V}$, depending on the module)
 - The problem was more severe with **Stepper-1** modules (> 10% of channels)
 - The cause is still under investigation: might be related to the very high TID
 - д , д ,

Photo from wafer

- \mathbf{n}^+ and \mathbf{p}^+ columns penetrate the substrate from the same silicon face
- Two FBK 3D productions: **Stepper-1** and **Stepper-2**
 - Step-And-Repeat photolithography technology
 - Same pixel design, but in Stepper-2 production the distance between \mathbf{n}^+ columns and the backside of the sensor (low resistivity silicon) is increased

