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For each device and energy, photoinduced-
current maps and X-ray fluorescence maps were
taken to evaluate the device composition.

Avalanche Photo Diodes (APDs) are extremely
efficient and sensitive since they are able to exploit
avalanche multiplication of the photogenerated
carriers: by amplifying the photocurrent above the
noise floor of the read-out circuit they can
dramatically improve the signal-to-noise ratio (SNR).
This prerogative makes them very effective in
sensing extremely weak signals, but, on the other
hand, it also represents a major critical point: in fact,
the multiplication is only convenient if it is possible
to keep very low the noise induced by the
multiplicative process.

GaAs SAM-APDs
In particular, compound semiconductors based on
III-V elements like gallium arsenide (GaAs) have
unique properties, such as high effective atomic
number, a direct bandgap, high
electric-breakdown fields and
a high electron mobility. For
example, due to their high Z,
they possess inherent
advantages, compared to Si
photon counters, such as
shorter absorption length for
high energy x-rays. Also,
thanks to their larger
electronic mobility, they have
shorter response times.

Moreover, utilizing a super-lattice structure, consisting
of nanometer-sized and alternating layers of such
compound semiconductors, the noise associated with
cha charge multiplication

is minimized. While
their photon
response and the
successive charge
transport can be
simulated, it is
essential for their
fine-tuning to verify
the obtained results
experimentally.

Different energies were used to have different
attenuation lengths, thus producing carriers at
different distances from the multiplication
layer.

FABRICATION & SIMULATIONS

Simulations of a vertical cross
section using Sentaurus TCAD
Different Idark values are
obtained assuming no hetero-
junction as opposed to graded or
digital alloy. This is a limitation of
the SRH model in TCAD. CV
curves instead are reproduced.

Several GaAS APDs have been grown by
molecular beam epitaxy (MBE) on a 500-µm-
thick heavily Si-doped n-type substrate.

• 4.5 µm
• 300 nm
• 15 µm

Different absorption
region thicknesses

Laser measurements gave an estimation of
the excess noise factor (ENF) and a
measurement of the multiplication.

• Single hole-electron pair production due
to low photon energy

• No photon penetration inside the
multiplication region

MEASUREMENTS
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The estimation required an accurate knowledge
of the APD’s gain 𝑀 and power spectral density.

The acquired data substantially highlight:
• Absence of traps in the interfacial regions
• Independence of the efficiency from the thickness of the absorption

region, up to 15 µm
• Devices designed not to reach the punch-through anyhow exhibit

quite high photocurrents
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