A new graphene-based RPC fully built with additive manufacturing

L. Benussi,a, S. Bianco,a, R. Campagnola,b,M. Caponero,b,c, S. Colafranceschi,b, H. Gebremedhin,a, J. Hess,a, J. Horsley,c, M. Landis,c, S. Meola,a, D. Nester,d, L. Passamonti,d, L. Peachey-Stoner,a, R. Peachey-Stoner,d, D. Piccolo,d, D. Pierluigi,a, A. Russo,a, G. Saviano,d,c, L. Stutzman,a, L. Tezazu,a

Additive manufacturing is a popular technique currently providing new opportunities in several domains. We applied the AM technology to detector construction. We had hypothesized that a fully automated 3D printing of a detector would reduce drastically:

1) detector construction cost and assembly time
2) the probability of mistakes during construction

We introduced and optimized a new electrode material to match the properties of the existing Bakelite featured in RPC detectors for LHC experiments. The new material is extruded in a filament form, readily usable by any general-purpose desktop 3D printers.

With custom-made filament, we developed and printed several detector prototypes. Preliminary results, under cosmic rays regime, are going to be presented to demonstrate the proof-of-concept of this new RPC fully built with additive manufacturing.

Motivation

Adopting additive manufacturing as a breakthrough technology for the field of particle detection

- Fine tuning and control of the detector resistivity
- Detector manufacturing totally automatic via 3D printing, (no limitation in shape), well-controlled procedure (no hygroscopy)
- Standardized materials and high integration of components/parts (improved mechanical and electrical stability)
- Cost-effective for small and/or large scale production
- High customization for very different applications (high rate vs neutrinos, large vs small projects, active surface area dimensions)

Detector Design and manufacturing

The proposed detector is being designed following a simple, effective and flexible design methodology

- The detector resistivity can be controlled by doping PLA plastics with graphene
 - Very large variety of resistivity can be obtained, measured by a Trek-152 (compliant to ANSI/ESD Standards)
- Variable graphene content in the PLA-based filament, with resistivity of the electrode easily adjusted
 - Suitable for low/high rate cosmic experiments
- The mixed graphene+PLA pellet is extruded to generate a plastics filament to be used in the 3D printer
- Printing on glass ensures a mirror-like surface
- Two resistive electrode and one pure PLA frame are printed and glued to form the detector stack
- A 500 Ω squared HV distribution layer is then glued on both electrodes to apply HV
- 10 detectors are being printed and assembled to assess consistency and reproducibility of this technique

Current status and future plans

Promising R&D for a cost-effective detector design for general purpose uses
Aiming at a broader impact, delivering affordable detectors for educational purposes and potential small experiments

- Additive manufacturing dramatically reduces prototyping costs and the need for an industrial partner
- In-house design and fabrication allows complete control of the costs, timeline and design optimization
- Prototyping and testing is a formative learning educational tool that shapes young students
- We will continue to explore RPC prototypes and test them with cosmic ray and/or radiation sources.
- Upon success, we would explore all various detector concepts with additive manufacturing, such as THGEM, Micro dot detectors.

Presented by: Roberto Campagnola (roberto.campagnola@lnf.infn.it)

Affiliations: “Laboratori Nazionali di Frascati - INFN; “Centro Ricerche Frascati - Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA); Eastern Mennonite University; ”Dipartimento di Ingegneria Chimica, Materiali, Ambiente, Università degli studi di Roma “Tor Vergata”