
Documentation: cern.ch/hog, support: hog-group@cern.ch,
mailing list: hog-users@cern.ch (only for CERN users)

TCL/SHELL
No extra

requirements only
your chosen IDE

(Vivado, Quartus, ISE)

USING HOG WITH VIVADO

CREATE THE PROJECT
Use the

CreateProject.sh script
to create the

Vivado project

USE THE SHELL
SCRIPTS

Run the workflow
in batch mode

USE THE GUI
Developing can
be done using

the Vivado GUI in
project mode

INTEGRATED HOG SCRIPTS
Running at pre-synthesis, pre-implementation, post-implementation and
post-bitstream stage. Embed the git SHA and version, and write reports, etc.
Certify that nothing was touched when producing bitfile.
ADD NEW FILES / CHANGE THE SETTINGS
New files must be added to list files and settings to hog.conf file.
Users can do this manually and re-create the project,
or update the Hog configuration files using the dedicated Hog buttons.

VERSIONING
At pre-synthesis stage, Hog evaluates the design version from the git SHA in
the vM.m.p format. Version values are calculated for each library in the
project

COMMIT BEFORE RUNNING!
Uncommitted changes will generate a Critical Warnings, and Hog will
declare the repository as dirty, setting the design version to 0.
A diff file will be generated together with the binary file.

Hog (HDL on git): an easy system to handle HDL on a git-based repository
N. Biesuz, D. Cieri, N. Giangiacomi, F. Gonnella, G. Loustau De Linares, A. Peck - 2022 Pisa Meeting - 22-28 May 2022

HOG-HANDLED REPOSITORY STRUCTURE

Plain text files, containing the list of
files to be added to the project.
Different list files for different sets.
List files can be recursively included
in other list files.

The Top folder includes the Hog
projects. Each project subfolder

corresponds to a single design
and contains the necessary files

to create the project

LIST FILES

 WHAT IS HOG?

P&R
REPRODUCIBILITY
Absolute control of
HDL files, constraint
files and IDE settings

BINARY
TRACEABILITY

Git SHA and version
are embedded into
firmware registers

CONTINUOUS
INTEGRATION

Building of firmware in
Continuous Integration.
Automatic tagging and

releasing

TOP FOLDER

HOG.CONF

Project configuration text file (.ini
or .conf syntax), containing the

instructions to configure the project
properties (FPGA, synthesis and
implementation directives, etc..)

HDL SOURCES

HDL source files (.v, .vhd, etc.) can be
stored anywhere in the repository.
Recursive list files can be exploited to
organise HDL sources in modules
which can be easily reused.

A DIFFERENCE CHECKING SCRIPT IS RUN BEFORE SYNTHESIS
This script is one of the most sophisticated part of Hog and is able to compare the present content of the Vivado project to the list files
and hog.conf

CHECK ADDED FILES, MODIFIED PROPERTIES, EXTERNAL FILES, FILES CREATED AT RUN TIME
With different techniques, everything that is part of the project is checked by the script, even external files or files generated
dynamically at project creation that are not under version control. How is this done? Ask the presenter!

PREVENT MODIFICATIONS TO GO UNNOTICED INTO BINARY FILES
Developers can, even by mistake, touch the project before starting the workflow that leads to the binary file production.
This would lead to untraceable changes and must be avoided at all costs.

CRITICAL WARNINGS, SET VERSION TO ZERO, AND PRODUCE DIFF FILES
In case anything was modified, Hog will produce critical warnings, specifying the differences between the Vivado project and the list files
and hog.conf. The version embedded in the registers is set to 0, and the bitfile renamed with dirty suffix.
Diff files, detailing all the differences are also generated.

1. OPEN A MERGE REQUEST (MR)
Developments are done on short-lived feature

branches. To push changes to main branch, open a
merge request on the GitLab repository webpage. 2. MERGE REQUEST PIPELINE

Runs on private Gitlab runners with
Vivado/Quartus/ISE and/or Modelsim installed. Runs
the P&R workflow and the simulations for the
specified projects.

3. ACCEPT THE MERGE REQUEST
The repository librarian checks the

changes and, if the merge request
pipeline is successful, merges the

feature branch into master. 4. MASTER PIPELINE
Runs on shared runners with docker, and
automatically tags the repository. Special keywords
can be used in the MR description to increase
automatically the minor or major version numbers

5. TAG PIPELINE
Creates the GitLab release for the tag that was just
produced, including the version and timing tables,

the generated binary files, and a changelog, that can
be filled using special keywords in commit messages

Hog is available at gitlab.cern.ch/hog/Hog
● 6 developers (bus factor 2), 6-month releases under Apache 2 licence
● Next release Hog2022.2 in June 2022, oh gotta go… it’s next week!!
● Experimental features are available in the develop branch
● Used by: ATLAS, CMS, GAPS, FOOT, and several other projects…

not only academia!

HOG CONTINUOUS INTEGRATION WORKFLOW

LET’S TRY HOG!

Icon resources taken from Flaticon.com

CERTIFY THAT LOCAL COPY OF PROJECT IS UNTOUCHED WITH RESPECT TO THE REPOSITORY

CI SETUP
HOG CI
Include the hog.yml
in your .gitlab-ci.yml
file. Write few lines
for each project,
different CI jobs for
simulation and P&R

DYNAMIC CI
Include the
hog-dynamic.yml in
your .gitlab-ci.yml.
The CI configuration
is created
dynamically, and the
merge-request
pipeline is executed
in a child-pipeline

EXTRA CONFIGURATIONS
Hog-CI can be
customised to tailor
it to the specs of any
project.

Optional features include:
● Adding custom user jobs
● Automatic Gitlab releases
● Archive of binary files to EOS

cloud storage
● Automatic generation of

doxygen documentation
● Avoid building projects that

have not been touched

 Wanna try Hog?
 Here is a nice simple project on Xilinx ZCU102 board:

 > git clone --recursive https://gitlab.cern.ch/bham-dune/zcu102.git
 > cd zcu102
 > ./Hog/CreateProject.sh fmc0
 > vivado ./Projects/fmc0/fmc0.xpr

http://cern.ch/hog
mailto:hog-group@cern.ch
mailto:hog-users@cern.ch
https://gitlab.cern.ch/hog/Hog
https://gitlab.cern.ch/bham-dune/zcu102.git

