

EP-DT Detector Technologies

Fogress in new environmental friendly low temperature detector cooling systems development for the ATLAS and CMS experiments.

ABSTRACT

In the frame of the progress towards the High Luminosity Program of the Large Hadron Collider at CERN, the ATLAS and CMS experiments are boosting the preparation of their new environmental friendly low temperature detector cooling systems. This paper will present a general overview of the progress in development and construction of the future CO₂ cooling systems for silicon detectors at ATLAS and CMS (trackers, calorimeters and timing layers), due for implementation during the 3rd Long Shut Down of LHC (LS3). We will describe the selected technology for the primary chillers, based on an innovative transcritical cycle of R744 (CO₂) as refrigerant, and the oil-free secondary "on detector" CO₂ pumped loop, based on the evolution of the successful 2PACL concept. Different detector layers will profit from an homogenized infrastructure and will share multi-level redundancy that we will describe in details. The technical progresses achieved by the EP-DT group at CERN over the last years will be discussed in view of the challenges and key solutions developed to cope with the unprecedented scale of the systems. We will finally present how mechanics- and controls-related problems have been addressed via a vigorous prototyping programme, aiming at cost- and resource-effective construction of the final systems, which is starting now.

m Gas m liquid	2PACL cooling capacity in normal operation [kW]	80-100	0 (there is no	45	45		
		Incl. 2PACL control	2PACL)			610	310
	2PACL functional load [kW]		0	5	5	130	60
	Surface Storage keep cool load [kW]		0	0	0	10	10
	R744 cooling capacity requirement [kW]	Σ	50 (By dummyload)	50	50	750kW	380kW
	2PACL functional load peak [kW]		0	7	7	260	140
	Surface Storage load peak [kW]		0			50	50
	R744 cooling capacity requirement peak [kW]	Σ	60 (By dummyload)	52	52	920	500
	Peak load factor wrt nominal		120%	104%	104%	123%	132%
	R744 evaporation T requirement [° C]	-53	-53	-53	-53	-53	-53
gas	(at underground evaporator)	-55					
	R744 cooling capacity requirement in case of detector off [kW]	60	50				

- acceptable in case of power cut.
- CO₂ systems are designed as N+1 redundant, supplied via UPS backed-up by diesel, both for 2PACL and part of R744 to allow for continuous running and ambient heat pickup removal even when detector power is off.
- Fully CERN UNIOCS based control system with redundant PLCs architecture using distributed I/Os spread over long distance between surface and underground.

ATLAS	Temp. at detector exit	Heat per cooling unit	Cooling units	Plant type (Pump heads)	Max power/unit	Detector distribution lines						
	°C	kW	#	#	kW	#						
Pixel End Cap (PEC)	-40	57	2	2	69	6						
Pixel Barrel (POB)	-40	57				16						
Pixel inner system (PXI)	-40	29	1	1	34	6						
Strip End Cap (SEC)	-38	55	2	2	69	8						
Strip barrel (SBR)	-38	55				16						
HGTD	-40	54	1	2	69	8						
Spare plant			1	3								
	Tot	al cooling power	requested	kW	309							
	Temp. at	Heat per cooling	Cooling	Plant type (Pump	Max power/unit	Detector						
CMS	detector exit	unit	units	heads)		distribution						
	°C	kW	#	#	kW	#						
Outer Tracker (OT)	-35	86	2	3	103	46						
Inner Tracker (IT)	-35	00	2	5	105	24						
Barrel Timing Layer (BTL)	-35	46	1	2	69	12						
Calorimeter Endcap (CE) +z NEAR	-35	62	1	2	87	12						
Calorimeter Endcap (CE) +z FAR	-35	62	1	2	87	12						
Calorimeter Endcap (CE) -z NEAR	-35	62	1	2	87	24						
Calorimeter Endcap (CE) +z FAR	-35	62	1	2	87	24						
Endcap Timing Layer (ETL) +/-z	-35	85	1	3	103	4						
Spare plant			1	3								
Total cooling power available (30% VQ) kW 552												

Fully redundant control system architecture for both R744 and 2PACL

- Very advanced detailed integration studies both in ATLAS and CMS.
- Further optimization and redesign study for 2PACL plant and accumulators are ongoing.
- Multiple complex procurement process are starting this days to fulfill challenging schedule of CMS and ATLAS.
- On going DEMO commissioning. (R744 sys. A & 2PACL: 3H plant + 1H plant + accumulator + 2s 50kW dummy loads)

CONCLUSIONS

Last years for CO₂ project, both the R744 primary and the 2PACL, have been used to move from initial design stage to prototyping and preparatory for serial production. Major step has been achieved resulting in startup of DEMO system commissioning which brings important feedback form a scale of the 2PACL cooling system that has never ever been build before. Results are immediately being translated to hardware and software solutions to be applied in final installation dedicated to new generation of HiLumi LHC detectors.

The commissioning of R744 System A at DEMO has been well completed and validated the principle of operation. Collected feedback was used during the design of larger System B, being pre-production slice of final large scale modular installation for ATLAS and CMS experiments. Today system B is undergoing extensive commissioning in ATLAS shaft. With dummy load installed ~80m in underground, the oil carry-over and maximum capacity is being determined.