Overview of ATLAS forward proton detectors for LHC Run 3 and plans for the HL-LHC

Maciej Trzebiński (Institute of Nuclear Physics Polish Academy of Sciences) on behalf of ATLAS Forward Detectors

Physics of Interest

Events in which one or both protons remain intact after interaction.

Colourless exchange: photon or Pomeron.

ATLAS Forward Proton Detectors

Roman Pot technology to move detectors 2-3 mm to proton beam. Four Roman Pots, two on each site of ATLAS: Near and Far stations. All stations host Silicon Tracking (SiT) detectors.

Far stations equipped with Time-of-Flight detectors.

tracking time-of-flight detector detector Cherenkov photons

AFP @ Run 3

New design of detector flange: Out-of-Vacuum solution for ToF detectors.

New SiT modules to replace used ones.

Trigger module: possibility to trigger on a single ToF train.

New photo-multipliers: address inefficiency issues from Run2 data-taking.

Successful beams tests and installation in

HL-LHC Roman Pots at IP1

Silicon Tracker

Purpose: precise reconstruction of proton trajectory 6 μm in x, 30 μm in y [JINST 11 (2016) P09005] 4 SiT planes in each station, each consist 336×80 pixels with size of 50×250 μ m² (230 μ m thickness). Edgeless: dead edge (beam side) of only \sim 100 µm. Radiation-hard technology.

Triggering possibilities (~400 ns dead-time).

Time-of-Flight System

Purpose: reduce combinatorial background. 16 L-shaped quartz bars to guide Cherenkov light. Photons detected by a Micro-Channel Plate Photo Multiplier (MCP-PMT); radiation hard readout.

Timing resolution: aim for 20 ps at Run3. In Run 2: 35 ± 6 ps (side A) and 37 ± 6 ps (side C) per train.

Triggering possibilities (<25 ns dead-time).

LHC tunnel.

Currently commissioning with first LHC

Data-taking plans:

- participate in all standard, high pile-up (μ) fills,
- take part in dedicated low-μ runs.

AFP @ Run 4

Motivation: photon induced processes and BSM searches.

Ongoing discussion in ATLAS.

Significant constraints in LHC tunnel wrt. Run3 \rightarrow only few locations possible for pots.

Location of pots determines accessible mass range.

BP1

0.5

0.4⊢

0.3

0.2

0.1

RP2 RP3

---- RP1+RP3 RP2+RP3 RP1+RP2+RP3

√s = 14 TeV, β* = 0.15 m $\theta_{\rm C} = -250 \ \mu rad \ (\phi = 0)$ TCL4/5/6 = 16.4/16.4/16.4

The work of MT was partially supported by Polish National Science Centre (project no. UMO-2019/34/E/ST2/00393).

