

The upgrade of the ATLAS Luminosity detector (LUCID) for HL-HLC

INFN

Istituto Nazionale di Fisica Nucleare

Federico Lasagni Manghi on behalf of the ATLAS Collaboration

LUCID in Run 2 (and 3)

LUCID is and has been the main ATLAS Luminosity monitor: the only detector that can measure luminosity for individual bunch crossings, online, in any LHC L range.

- Total Run 2 offline luminosity measured with a 1.7% uncertainty and a better than 1% stability over time.
- Main systematic: VDM calibration **Design strategies:**
- a fast, low-background and rad-hard PMT-based Cherenkov detector
- fast electronics handling hit and charge algorithms
- stable, flexible and redundant operation, thanks to the gain calibration system and the layout

Solution: New PMT locations

Moving the PMT's away from the beam-pipe attains:

- Lower dose absorbed by bases and PMT's
 - 30% lower than around the beam-pipe
- Attenuation of HIT algorithms saturation
- Better PMT accessibility (yearly replacement possible)

Baseline

scenario

Extreme

Run 5

Saturation in the JF-3 position

OFFLINE requirement: 8 working standard R760 PMT's ONLINE requirement: small R1635 PMT's

Solution 2: Improved fiber detector

Fiber detector intrduced in Run 1, improved in Run 2, upgraded prototype in Run 3:

- New calibration system
- New quartz fibers with better radiation hardness
- New techiniques to overcome the shortcomings of charge measurements

Two possible layouts for HL-LHC:

Attached below the top of the JFC-3 shielding

Fiber radiaton hardness

Around the beampipe -> **Prototype** installed around the VJ cone in a similar fashion.

The Run 3 PMT prototypes

JFA/C-3 Prototypes with standard R760 and smaller R1635 PMT's

- To study possible shielding surface effects
- To evaluate possible crossing-angle dependences

To validate the dose and flux simultaions in this location JN-A prototype: two new R760 PMTs installed behind the forward JFA3 shielding.

- Low-rate measurement that is expected to be free from μ -dependence and hit-saturation.
- Predicted occupancy 10-30% wrt the LUCID-2 location
- Not sensitive in VdM scans

R7459

- New R7459 large PMT's hosting ²⁰⁷Bi source and a bundle connector
- Connector with ²⁰⁷Bi source, bundle plug and short calibration fiber
- 6 different LED wavelength pulsed into the bundles AND short fibers
 - Ratio variation ∝ total degradation
- UV filter in **one** of the bundles for stability

Innovative calibration system:

Fibers tested in gamma irradiation facility:

66 fibers per bundle UVNSS 600/624/660

Hermetic carbon lave

Fluorine-doped silica cladding

NA = 0.28

Silica glass con

600 µm

- 6 wavelengths (285-627 nm) cycled
- Transmission loss measured over 6 m rescaled to effective 3.2m exposed length
- Large losses observed in UV -> filter inserted in one of the prototype bundles

PMT gain monitored and adjusted using the ²⁰⁷Bi source Fiber degradation measured using pulsed LED light:

- 310, 360, 410, 467.5, 525, 627.5 nm
- Charge ratio used for L correction
- Combination of simulation and calibration data

 μ = averge number of interactions per bunch-crossing BC = bunch crossing VDM = Van der Meer scan (absolute L calibration)

References

"The LUCID 3 detector for the ATLAS Phase-II Upgrade" CERN-LHCC-2021-016 "The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS" 2018 JINST 13 P07017 "Choice and characterization of photomultipliers for the new ATLAS LUCID detector" 2016 JINST 11 P05014

Pisa Meeting on Advanced Detectors

22nd June 2022

Federico Lasagni Manghi