# Study on properties of AISI 316L produced by laser powder bed fusion for high energy physics applications

### Cecilia Rossi<sup>1,\*</sup>, Francesco Buatier de Mongeot<sup>2</sup>, Giulio Ferrando<sup>2</sup>, Giacomo Manzato<sup>2</sup>, Mickael Meyer<sup>3</sup>, Luigi Parodi<sup>1</sup>, Stefano Sgobba<sup>3</sup>, Marco Sortino<sup>4</sup>, Emanuele Vaglio<sup>4</sup>

<sup>1</sup>INFN Genoa, via Dodecaneso 33, 16146 Genoa, Italy; <sup>2</sup>Dipartimento di Fisica, Università degli Studi di Genova, via Dodecaneso 33, 16146 Genoa, Italy; <sup>3</sup>CERN, 1211 Geneva 23, Switzerland; <sup>4</sup>Dipartimento Politecnico di Ingegneria e Architettura, Università degli Studi di Udine, via delle Scienze 206, 33100 Udine, Italy;

Nowadays additive manufacturing (AM) is catching on and spreading across various fields at an astonishing rate. High energy physics, where materials are often exposed to special environmental conditions, is also starting to use this technology. The aim of this paper is to compare traditional and 3D printed stainless steel AISI 316L products with an eye turned to the specific high energy applications. Experimental tests are carried out on a set of samples to analyse the material composition and to assess properties such as mechanical performance in cryogenic application, high radiation resistance and ultra-vacuum compatibility.

| sample  | shape    | dimension  | machined       | heat treatm. | Test                            |
|---------|----------|------------|----------------|--------------|---------------------------------|
| 1, 2, 3 | cylinder |            |                | NT           | Tancila tast at                 |
| 4, 5, 6 |          | D = 6 mm,  | tensile sample | STD          | Doom Tommonotume (DT)           |
| 7       |          | L = 75  mm |                | VF           | Room Temperature (RT)           |
| 8,9     |          |            |                | VF           | Tensile test at 77 K            |
| 10      | cube     | L = 20 mm  | -              | NT           | Composition and Microstructure; |
| 11      |          |            |                | STD          | Ferrite content;                |
| 12      |          |            |                | VF           | Magnetic permeability           |

|   | 1 | C            | $\mathbf{O}$ | Г |
|---|---|--------------|--------------|---|
|   |   | $\mathbf{D}$ |              | L |
| - | - | $\sim$       | -            | h |



Scanning

mirrors

Selective laser melting technology working principle: the recoater spreds a metallic powder bed on the built platform, the laser selectively melts the powder and the part is build layer by layer from bottom to top.



Comparison of true stress strain curves at RT: AISI 316L AM parts subjected to

*NT: no heat treatment, STD: standard heat treatment* (180°C/h ramp up to 550 °C; maintain T for 6 hours; cooling down at RT), *VF: vacuum firing heat treatment* (200°C/h ramp up to 950 °C; maintain T for 2 hours; cooling down at RT)

<u>Microstructure analysis</u>: Global columnar structure parallel to printing direction due to thermal gradient during printing process.

NT : dendritic microstructure stopped by melting pool boundaries

STD : more elongated grains though melting pools, dendritic structure are blurred. VF: more homogeneous structure, melt pool boundaries dissolved, only grains are visible

|                   | Rp0.2      | Rm         |
|-------------------|------------|------------|
|                   | $[N/mm^2]$ | $[N/mm^2]$ |
| NT                | 506 ± 13   | 589 ± 2    |
| STD               | 492 ± 5    | 608 ± 6    |
| VF <sub>RT</sub>  | 369 ± 5    | 593 ± 5    |
| Bulk <sup>1</sup> | 400        | 500-930    |

<sup>1</sup>According to ISO EN 10088-3 - 1.4404





NT & STD  $\rightarrow$  higher *Rp0.2* (yield stress) $\rightarrow$  due to presence of a dendritic structure in the melting pools, consequence of rapid solidification in the AM process. VF  $\rightarrow$  higher *Rm* (ultimate tensile stress) $\rightarrow$  material consolidation



#### Different heat treatments:

- no difference in ferrite content
- no difference in the magnetic permeability

|     | Ferrite content check | Magnetic permeability |
|-----|-----------------------|-----------------------|
|     | (Ferriscope FMP30)    | (Magnetoscope 1.069)  |
| NT  | 0.14±0.02 %           | $1.004 \pm 0.004$     |
| STD | 0.15±0.02 %           | $1.004 \pm 0.004$     |
| VF  | 0.1±0.02 %            | $1.004 \pm 0.004$     |







#### Ferrite content @tensile sample fracture:

|                   |             | Confirmation that sample consolidation due to creation  |
|-------------------|-------------|---------------------------------------------------------|
| VF <sub>RT</sub>  | 0.24±0.02 % | of martensitic phase from austenitic, which corresponds |
| VF <sub>77K</sub> | 32.9±0.02 % | to the development of a magnetic behaviour.             |

 $\uparrow Rp0.2$  and  $\uparrow Rm$ : thermal effect on dislocation movement & appearance of martensitic phase. Same behaviour as bulk material.

## Representative stress-strain diagram of VF sample: RT vs. T = 77K

[1] Cooper, Adam J., W. J. Brayshaw, and A. H. Sherry. "Tensile fracture behavior of 316L austenitic stainless steel manufactured by hot isostatic pressing." Metallurgical and Materials Transactions A 49.5 (2018): 1579-1591 [2] Byun, T. S et al. (2021). Mechanical behavior of additively manufactured and wrought 316L stainless steels before and after neutron irradiation. Journal of Nuclear Materials, 548, 152849.