
Toward A.I.-Assisted 
Design of Experiments

MOTIVATION 
In 2012 we discovered the Higgs 
boson with machine learning 
tools. That marked a paradigm shift 
in data analysis procedures and 
performance.
A similar paradigm shift is offered 
today by Artificial Intelligence 
methods allowing for the end-to-end 
optimization of our  instruments: 
Differentiable Programming (DP). What is differentiable programming? 

DP is the technology under the hood of deep learning 
methods, enabling automatic calculation of derivatives. Using 
the chain rule of differential calculus  we may compute how 
parameter variations affect the loss function of a NN, or the 
global utility of an optimization task.

Left: Encoding all 
system elements
within a pipeline 
allows for the 
back-propagation 
of gradients of 
the objective 
function,  and a 
full scanning of 
the parameter 
space of design 
options.
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Left: The optimization of the 
MUonE experiment identified a 
modified layout of its tracker, 
offering factor of 2 improvement 
in the relevant figure of merit 
(relative resolution in q2 of high-
energy scatterings) with respect to 
original design [1].

Similarly, a factor of 2 reduction in 
muon flux in SHIP by magnet 
optimization was shown in [2].

Optimized setup

Original layout

150 GeV muons on Be targets

Use cases currently studied include:
• Muon tomography detectors (see above)
• EM calorimeter for μ collider detector (in progress)
• Upgrade of LHCb EM calorimeter (see left)
• Hybrid hadron calorimetry (in progress)
• SWGO Cherenkov array optimization (starting)

Right: Proof of 
optimization of a  

muon tomography 
detector. 

DP software finds 
optimal geometry of 

detection panels 
given cost, 

constraints, and 
specified objective

(e.g., power of 
detection of specific 

materials). 
Case shown: 

detection of U blocks 
in scrap metal within 

container. 

Below: Position and size of detection panels above and below the scanned volume

Training epoch

To see an 
animation 
scan the 
QR code !

Generative models for particle interactions can be used 
to model non-differentiable stochastic processes:

Below, right: simulation of EM 
showers produced by GEANT4 are 

well reproduced by a generative 
adversarial network model, then 

used in the optimization task

Detector design in HEP traditionally leverages 
robustness-driven paradigms
• «Track first, destroy later»; 
• focus on redundancy, ensuring intercalibration;
• symmetrical layouts
 Great, but not meant to optimize performance!

DP-based models describing all parts of an 
experiment, from sensor geometry to inference 
extraction, enable a continuous mapping of the 
performance, probing the result of design choices in
high-dimensional spaces which we cannot explore 
with discrete sampling.

These models may allow the discovery of human-
impervious, innovative solutions, with  LARGE
potential gains. E.g., see below:

MODE [3] aims to pave the 
way to the full optimization 
of our future instruments. 
By solving problems of 
moderate complexity, we are 
building a modular software 
library, gradually 
empowering the study of 
harder use cases [4]. 

Below, left: Upgrade of LHCb EM calorimeter. Optimized significance to BsJ/ψ
π0 signal is shown given number of channels [4]. Insets show baseline PMT layout
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