

Direct MIP detection with sub-10 ps timing resolution Geiger-Mode APDs aqualab

Francesco Gramuglia, <u>Emanuele Ripiccini</u>, Carlo Alberto Fenoglio, Ming-Lo Wu, Lorenzo Paolozzi, Claudio Bruschini and Edoardo Charbon

École polytechnique fédérale de Lausanne (EPFL)

SPAD [1]

- 180 nm CMOS technology
- P-I-N structure
- Substrate-Isolated type
- P-well anode, buried N-well cathode
- HV provided through a deep N-well

Device under test

Chip

- + 25 μm diameter CMOS SPAD
- Active quenching/recharge
- Tunable delay time (down to 3 ns)
- System-on-board:
- Single external power supply source
- All voltages provided through DACs controlled with serial protocol
- Reduced cable noise
- Si-Ge comparator for 50 Ohm coupling
- High signal slew rate (≥ 1.6 V/ns)

$\begin{array}{c|c} \vdots & \vdots & \vdots & \vdots \\ Active recharge loop & & & & & \\ \hline \end{array}$

Direct Minimum Ionizing Particle Detection

Time-of-flight measurement of Minimum ionizing particles with SPADs [2]

- Coincidence to eliminate noise background
- Excellent timing resolution \rightarrow 6.4 ps sigma

Radiation Hardness

Cooling system

-				onigio		
24	27 ± 1	104 ± 4	11.5 ± 0.4	8.1 ± 0.3		Chips glued on the front-side with flip chip machine: 1 µm precisio
27	22 ± 2	62 ± 3	9.4 ± 0.7	6.4 ± 0.5		
State of the art					I/O pads	
	2					Electronics
Device	σ _{single} (ps)	Time walk correction	Pre-amplifier	MIP Detection efficiency		SPAD array
SPAD AQUA	6.4	No	No	~99% [3]		
TIMESPOT	19 [5]	Yes	Yes	99%		
UFSD (LGAD)	27 [4]	Yes	Yes	99%		
				•		

[1] F. Gramuglia, et al., "A low-noise CMOS SPAD pixel with 12.1 ps SPTR and 3 ns dead time", IEEE JSTQE, 2021. 2021

[2] F. Gramuglia, E. Ripiccini et al., "Sub-10 ps minimum ionizing particle detection with Geiger-Mode APDs", Front. Phys., 2022, 10, 10.3389/fphy.2022.849237

[3] W. Riegler, P. Windischhofer, Time Resolution and Efficiency of SPADs and SiPMs for Photons and Charged Particles. Nucl Instr Methods Phys Res Section A: Acc Spectrometers, Detectors Associated Equipment (2021)

[4] N. Cartiglia et al. Beam Test Results of a 16 ps Timing System Based on Ultra-fast Silicon Detectors. Nucl Instr Methods Phys Res Section A: Acc Spectrometers, Detectors Associated Equipment (2017) 850:83–8

[5] D. Brundu et al., Accurate modelling of 3D-trench silicon sensor with enhanced timing performance and comparison with test beam measurements, JINST 16 (2021) 09, P09028