Inspecting the charm hadronization via measurements of charm baryon production in hadronic collisions with the ALICE experiment at the LHC

Assergi (L'Aquila) - Italy

10th May 2022

Mattia Faggin, University and INFN – Padova, Italy On behalf of the ALICE collaboration

Heavy quarks: a unique probe

- Mass of the order of GeV/c² → charm and beauty mainly produced in hard-scattering processes
- **Pb–Pb** collisions:
 - quark-gluon plasma (**QGP**) produced \rightarrow parton d.o.f.
 - **charm and beauty** produced **before** the **QGP** $\tau_{\text{QGP}} \sim 1 \text{ fm}/c$ (production timescale: $\Delta \tau \sim 1/Q \sim 1/2m$)
 - \rightarrow **Experience** the **full evolution** of the system

CHARM

• $m_{\rm c} \simeq 1.3 \ {\rm GeV}/c^2$ • $\Delta \tau_{\rm c} \simeq 0.08 \ {\rm fm}/c$

Phys. Rev. Lett. 116, 222302

• **BEAUTY** $m_{\rm b} \simeq 4.2 \ {\rm GeV}/c^2$

• $\Delta \tau_{\rm b} \simeq 0.03 \ {\rm fm}/c$

Measurement of charm and beauty hadrons: access to charm and beauty quarks dynamics

pp collisions

- Tests of pQCD calculations
- Reference for heavy-ion collisions

p–Pb collisions

Cold nuclear matter effects

 →modification of parton
 distribution functions
 (PDF) in bound nucleons

 $-(\tau_0 < 1 \text{ fm/c})$

beam direction

Pb–Pb collisions

• Hot nuclear matter effects

Hadron

QGP

- \rightarrow Energy loss in the QGP
- \rightarrow Collective motion of the system
- → Modification of hadronization mechanisms

Charm and beauty hadron formation in e^+e^- and Pb-Pb collisions

- Hard scattering $e^+e^- \rightarrow q\bar{q}$
- Color-potential string between q and \overline{q}
- Hadronization via multiple string breaking and formation of quark-antiquark pairs
- Charm quark produced in hard scattering coalesces with light (di-)quarks from the system
- Expected to increase baryon production at low-intermediate $p_{\rm T}$
- QGP: interplay coalescence (low $p_{\rm T}$) vs. fragmentation (high $p_{\rm T}$)

Mattia Faggin - University and INFN, Padova (Italy)

ALICE

Standard description of heavy-quark hadronization based on a factorization approach

Fragmentation functions assumed universal among collision systems and constrained from e⁺e⁻ and e⁻p measurements

ALICE

Charm and beauty hadron formation in pp collisions

D0

- Meson-to-meson ratios independent of meson
 *p*_T and collision system
- Agreement with model calculations (FONLL) based on a factorization approach and relying on universal fragmentation functions (e⁺e⁻, e⁻p) and with e⁺e⁻, e⁻p measurements

Charm and beauty hadron formation in pp collisions

- Meson-to-meson ratios independent of meson
 *p*_T and collision system
- Agreement with model calculations (FONLL) based on a factorization approach and relying on universal fragmentation functions (e⁺e⁻, e⁻p) and with e⁺e⁻, e⁻p measurements

- Baryon-to-meson ratios significantly higher than e⁺e⁻ results
 → PYTHIA8 Monash (e⁺e⁻ charm fragmentation functions)
- Baryon-to-meson enhancement at low *p*_T also observed in the beauty sector (LHCb: Phys. Rev. D 100, 031102(R))

- Further hadronization mechanisms?
- Non-universal fragmentation functions?

Λ_c^+/D^0 in pp collisions - models

ALICE Preliminary

PYTHIA 8 (Monash) PYTHIA 8 (CR Mode 2)

Catania, fragm.+coal

M. He and R. Rapp SH model + PDG SH model + RQM

10

HERWIG 7

ALICE (PRL 127 (2021) 202301)

- 🥩 J.P. Christiansen, P. Z. Skands: <u>JHEP 1508 (2015) 003</u>
- 1. <u>PYTHIA 8 with updated Color Reconnection (CR-BLC)</u> <u>modeling</u>
 - $\circ~$ CR with SU(3) weights and string length minimization
 - "junction" topology enhances charm baryon production

pp, $\sqrt{s} = 5.02 \text{ TeV}$

|v| < 0.5

 Λ_c^+/D^0

0.8

0.6

ALI-PREL-502467

 Λ_{c}^{+}

 $\mathbf{D^0}$

2. <u>Catania model</u>

p₊ (GeV/*c*)

- Thermalised system of u,d,s and gluons assumed
- Mixed hadron formation
 - a. Fragmentation
 - **b.** Coalescence \rightarrow imposed to be the only mechanism for $p \rightarrow 0$

Λ_c^+/D^0 in pp collisions - models

ALICE Preliminary

PYTHIA 8 (Monash)

HERWIG 7

PYTHIA 8 (CR Mode 2)

Catania, fragm.+coal

M. He and R. Rapp: SH model + PDG

SH model + RQM

10

 p_{τ} (GeV/c)

ALICE (PRL 127 (2021) 202301)

 Λ_c^+/D^0

0.8

0.6

ALI-PREL-502467

 Λ_{c}^{+}

 $\mathbf{D^0}$

pp, $\sqrt{s} = 5.02 \text{ TeV}$

|y| < 0.5

🥩 M. He, R. Rapp: <u>PLB 795 (2019) 117-121</u>

- 3. <u>Statistical Hadronization Model and Relativistic Quark</u> <u>Model (SHM + RQM)</u>
 - Hadronization driven by statistical weights governed by hadron masses $(n_i \sim m_i^2 T_H K_2(m_i/T_H))$ at a hadronization temperature T_H
 - Strong feed-down from an augmented set of excited charm baryons
 - \rightarrow PDG: 5 Λ_c , 3 Σ_c , 8 Ξ_c , 2 Ω_c
 - → RQM: additional 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c (not yet measured)

Can further baryon measurements help understanding the mechanisms underlying the baryon enhancement?

- Larger than e^+e^- and Monash (tuned on e^+e^-) \rightarrow larger relative enhancement than Λ_c/D^0
- Well described by predictions from SHM + RQM, Catania and QCM (charm coalescence with equal-velocity light quarks, thermal weights for abundances)
- $\Sigma_c^{0,+,++}/D^0$ partially accounts for larger Λ_c^+/D^0
- Measurement of Λ_c feed-down from Σ_c

 $\Lambda_{c}^{+}(\leftarrow \Sigma_{c})/\Lambda_{c}^{+} = 0.38 \pm 0.06(\text{stat.}) \pm 0.06(\text{syst.})$

• Overestimated by CR modes

- Clear $p_{\rm T}$ dependence and larger than Monash
- Significantly underestimated by models
 - $D_s^+/(D^0 + D^+)$ compatible with expectations from e^+e^- → **baryons** are 'strange'?
- Catania (fragm. + coal.) gets close to the measurements

- $\Xi_{c}^{0}/\Sigma_{c}^{0,+,++}$ in agreement with Monash \rightarrow similar suppression in e⁺e⁻ for $\Xi_{c}^{0,+}$ and $\Sigma_{c}^{0,+,++}$?
 - → matter of similar (diquark) mass? $(m(uu, ud, dd)_1 \approx m(us)_0)$

Heavier charm baryons: Ω_c^0

 $BR(\Omega_c^0 \rightarrow \Omega^- \pi^+) = (0.51 \pm 0.07)\%$ (Y. Hsiao et al. EPJC 80, 1066 (2020)) not measured \rightarrow used to scale model predictions

- Pythia 8 with CR-BLC underestimates data
- **Coalescence models** get **closer** to the measurements
- Ω_c^0/Ξ_c^0 described by Catania model (coalescence + fragmentation) including higher-mass resonance decays

 Ω_c^0 : sizeable contribution to charm production at LHC energies?

ALICE

- **Compatible** $p_{\rm T}$ -integrated $\Lambda_{\rm c}^+/{\rm D}^0$ ratio in **pp** and **p**-Pb collisions within uncertainties (next slides) $\rightarrow \Lambda_{\rm c}^+/{\rm D}^0$ larger in **p**-Pb collisions than in **pp** for $p_{\rm T} > 3$ GeV/*c* given a harder $p_{\rm T}(\Lambda_{\rm c}^+)$ spectrum
- **Charm fragmentation fractions** in **pp** and **p**–**Pb** collisions at $\sqrt{s_{NN}} = 5.02$ TeV
 - No significant differences
 - Significant **baryon enhancement** with respect to **e**⁺**e**⁻ and **e**⁻**p** results

12

ALICE

- Λ_c^+/D^0 ratio in $4 \le p_T < 8 \text{ GeV}/c$ in **central** (0-10%) **Pb–Pb** collisions **larger** than **pp** (3.7 σ)
- Shape qualitatively caught by SHMc (statistical hadronization + charm) and Catania model
- Data described by TAMU (hydro. + fragmentation + coalescence + extra c-baryons)

Baryon-to-meson enhancement due to an interplay of radial flow and recombination?

- Λ_c^+/D^0 vs. p_T at highest multiplicity larger than that at lowest multiplicity \rightarrow significance of 5.3 σ (1 < p_T < 24 GeV/c)
- p_T and multiplicity dependence qualitatively described by PYTHIA CR-BLC \rightarrow significantly underestimated by Monash tune
- $p_{\rm T}$ -integrated $\Lambda_{\rm c}^+/{\rm D}^0$ ratio compatible with a flat behaviour versus event multiplicity

- Λ_c^+/D^0 vs. p_T at highest multiplicity larger than that at lowest multiplicity \rightarrow significance of 5.3 σ (1 < p_T < 24 GeV/c)
- p_T and multiplicity dependence qualitatively described by PYTHIA CR-BLC \rightarrow significantly underestimated by Monash tune
- $p_{\rm T}$ -integrated $\Lambda_{\rm c}^+/{\rm D}^0$ ratio compatible with a flat behaviour versus event multiplicity \rightarrow flat trend reproduced by models implementing fragmentation+coalescence and SHM predictions

Baryon-to-meson enhancement at intermediate p_T due to an interplay of radial flow and recombination (different p_T redistribution for baryons and mesons)?

Summary and outlook

pQCD models based on **factorization approach** assuming **universal fragmentation functions** among collision systems <u>do not describe</u> charm **baryon production** in hadronic collisions **at the** LHC

 $\rightarrow \Lambda_c^+/D^0$ and **fragmentation fractions** in pp **significantly different** from e⁺e⁻, e⁻p

- → Charm hadronization not a universal process among collision systems
- **Further charm hadronization mechanisms** introduced by several models to describe the ALICE measurements
- ALICE experiment ready for new data taking!
 - **1.** Larger statistics
 - 2. Upgraded apparatus

Summary and outlook

pQCD models based on **factorization approach** assuming **universal fragmentation functions** among collision systems <u>do not describe</u> charm **baryon production** in hadronic collisions **at the** LHC

 $\rightarrow \Lambda_c^+/D^0$ and **fragmentation fractions** in pp **significantly different** from e⁺e⁻, e⁻p

- → Charm hadronization not a universal process among collision systems
- Further charm hadronization mechanisms introduced by several models to describe the ALICE measurements
- ALICE experiment ready for new data taking!
 - **1.** Larger statistics
 - 2. Upgraded apparatus

ALICE-PUBLIC-2020-005

Target samples of ALICE high-energy pp programme

- $L_{int} = 200 \text{ pb}^{-1}$, B = 0.5 T \rightarrow high-multiplicity, selection of rare signals
- $L_{int} = 3 \text{ pb}^{-1}$, $B = 0.2 \text{ T} \rightarrow \text{continuous readout, all}$ interactions kept

Target sample of ALICE Pb–Pb programme (Run3 + Run4)

- $L_{\rm int} = 13 \text{ nb}^{-1}, \sqrt{s_{\rm NN}} = 5.5 \text{ TeV} \rightarrow \text{continuous readout},$
 - all interactions kept

Summary and outlook

pQCD models based on **factorization approach** assuming **universal fragmentation functions** among collision systems <u>do not describe</u> charm **baryon production** in hadronic collisions **at the** LHC

 $\rightarrow \Lambda_c^+/D^0$ and **fragmentation fractions** in pp **significantly different** from e⁺e⁻, e⁻p

- → Charm hadronization not a universal process among collision systems
- Further charm hadronization mechanisms introduced by several models to describe the ALICE measurements
- ALICE experiment ready for new data taking!
 - 1. Larger statistics
 - 2. Upgraded apparatus

ALICE-PUBLIC-2020-005

Target samples of ALICE high-energy pp programme

- $L_{int} = 200 \text{ pb}^{-1}$, $B = 0.5 \text{ T} \rightarrow \text{high-multiplicity}$, selection of rare signals
- $L_{int} = 3 \text{ pb}^{-1}$, $B = 0.2 \text{ T} \rightarrow \text{continuous readout, all}$ interactions kept

Target sample of ALICE Pb–Pb programme (Run3 + Run4)

• $L_{int} = 13 \text{ nb}^{-1}, \sqrt{s_{NN}} = 5.5 \text{ TeV} \rightarrow \text{continuous readout},$ all interactions kept

Run:295585 Timestamp:2018-11-08 20:59:35(UTC) Colliding system:Pb-Pb Energy:5.02 TeV

THANK YOU FOR THE ATTENTION

XZ

Backup

Charm meson production in pp collisions

- Meson-to-meson ratios **independent** of meson $p_{\rm T}$ and **collision system**
- In line with model calculations based on a factorization approach and relying on universal fragmentation functions (e⁺e[−]) → FONLL

Charm mesons: D_s^+

$\sqrt{s} = 5.02, 7, 8, 13 \text{ TeV}$ Beauty meson fragmentation fraction ratios

- Fragmentation fraction ratios **compatible** among different collision systems, **energies** and rapidity ranges
- Higher fraction at 13 TeV?

 $\Lambda_{\rm h}^{\rm v}$

 B_s^0

 $\overline{\mathbf{R}}^0 + \mathbf{R}^{-1}$

15

 $\overline{\mathbf{B}^0}$ +

LHCb

vs = 13 TeV

20

 $p_{\rm T}(H_b)$ [GeV]

25

- $m_{\Lambda_{\rm b}^0}(\sim 5.6 \,{\rm GeV}/c^2) > m_{\rm B}(\sim 5.3 \,{\rm GeV}/c^2)$
- \rightarrow <u>non-universality of fragmentation fractions?</u>

• Σ_c -state production suppressed by ~3-4 times that of excited Λ_c^+ states in e⁺e⁻ collisions at $\sqrt{s} = 10.52$ GeV

25

.ICE

Charm fragmentation functions in p-Pb collisions

H _c	$f(\mathbf{c} \rightarrow \mathbf{H}_{\mathbf{c}}) \text{ (pp)}$	$f(\mathbf{c} \rightarrow \mathbf{H}_{\mathbf{c}}) (\mathbf{p}-\mathbf{Pb}) (R_{\mathbf{pPb}}(\Xi_{\mathbf{c}}) = R_{\mathbf{pPb}}(\Lambda_{\mathbf{c}}^{+}))$
D^0	$39.1 \pm 1.7(\text{stat})^{+2.5}_{-3.7}(\text{syst})$	$41.6 \pm 1.24(\text{stat})^{+2.44}_{-3.44}(\text{syst})$
\mathbf{D}^+	$17.3 \pm 1.8(\text{stat})^{+1.7}_{-2.1}(\text{syst})$	$18.3 \pm 0.10(\text{stat})^{+1.52}_{-1.64}(\text{syst})$
D_s^+	$7.3 \pm 1.0(\text{stat})^{+1.9}_{-1.1}(\text{syst})$	$9.0 \pm 0.48(\text{stat})^{+1.56}_{-1.04}(\text{syst})$
$\Lambda_{\rm c}^+$	$20.4 \pm 1.3(\text{stat})^{+1.6}_{-2.2}(\text{syst})$	$17.6 \pm 1.06(\text{stat})^{+1.34}_{-1.72}(\text{syst})$
$\Xi_{\rm c}^0$	$8.0 \pm 1.2(\text{stat})^{+2.5}_{-2.4}(\text{syst})$	$6.7 \pm 1.04(\text{stat})^{+2.35}_{-2.30}(\text{syst})$
D*+	$15.5 \pm 1.2(\text{stat})^{+4.1}_{-1.9}(\text{syst})$	$12.9 \pm 0.58(\text{stat})^{+3.32}_{-1.12}(\text{syst})$

-

PYTHIA 8 CR modes

PYTHIA8 with String Formation beyond Leading Colour JHEP 1508 (2015) 003

- Colour reconnection mode with SU(3) topology weights + string-length minimisation.
 - From junction reconnection→enhance baryons.

A dynamical "QCD-inspired" way for coalescence?

- Partons created in different MPIs do not interact

- CR allowed between partons from different MPIs to minimize string length
- used in Monash tune

- Simple model of QCD colour rules to determine the formation of strings
 Minimization of the string length over all possible configurations
- Include CR with MPIs and with beam remnants

Phys. Rev. D 105, L011103 (2022)

$c\bar{c}$ cross section in hadronic collisions

NEW

FONLL: JHEP 1210 (2012) 137 NNLO: PRL 118 (2017) 122001, JHEP 03 (2021) 029 PHENIX: Phys. Rev. C 84 (2011) 044905 STAR: Phys. Rev. D 86 (2012) 072013

cc production cross section at midrapidity in **pp** and **p-Pb (new)** collisions at $\sqrt{s_{NN}} = 5.02$ TeV measured as <u>sum of ground state hadron cross sections</u>

$$\left(\frac{d\sigma_{pp}^{cc}}{dy}\right)_{|y|<0.5} = 1165 \pm 44(\text{stat.})_{-101}^{+134}(\text{syst.}) \,\mu\text{b}$$
$$\frac{1}{4} \cdot \left(\frac{d\sigma_{p-Pb}^{c\bar{c}}}{dy}\right) = 1057.5 \pm 28.6(\text{stat.})_{-76.0}^{+103.6}(\text{syst.}) \,\mu\text{b}$$

$$(uy)_{-0.96 < y < -0.04}$$

- Results **compatible** within systematic uncertainties
- **Results previously published** in **pp** at $\sqrt{s} = 2.76$ and **7 TeV** from D mesons **updated** with fragmentation fractions from $\sqrt{s} = 5.02$ TeV analysis
 - → ~40% increase driven by the observed baryon enhancement
- Results on **upper edge** of **FONLL and NNLO** calculations

IHEP 12(2019)092

Increasing event multiplicity

- pp, p-Pb, Pb-Pb shown together as a function of event multiplicity
- $p_{\rm T}$ -integrated $\Lambda_{\rm c}^+/{\rm D}^0$ ratio not dependent on multiplicity within uncertainties
- Λ_c^+/D^0 ratio smoothly **increasing** at intermediate p_T from pp to Pb-Pb
- Similar heavy-flavour hadronization in different colliding systems?
- Interplay with flow effects in Pb-Pb collisions?

Lucas Anne Vermunt **«Charm production: constraint to transport models and charm diffusion coefficient with ALICE»** Thursday 7 April, 09:00

Multiplicity dependence of Λ_c^+/D^0 in hadronic collisions

ALICE ITS upgrades in Run 3 and 4

ALICE

32

10

ITS 1 (ALICE exhibition)

6 layers:

- 2 layers of Silicon Pixel Detector (SPD)
- 2 layers of Silicon Drift Detectors (SDD)
- 2 layers of Silicon Strip Detectors (SSD)

ITS 2

7 layers of ALPIDE Monolitic Active Pixel Sensors

- $\rightarrow 10 \text{ m}^2$ active silicon area
- $\rightarrow 12.6 \times 10^9$ pixels

ITS 3

3 truly cylindrical Si pixel layers \rightarrow ultra-thin wafer-sized curved sensors \rightarrow no external connections air-flow cooling

 $B_s^0 \rightarrow D_s^- \pi^+$ measurement in Run 3 and 4 (1/2)

$B_s^0 \rightarrow D_s^- \pi^+$ measurement in Run 3 and 4 (2/2)

 $\Lambda_{\rm h}^0 \rightarrow \Lambda_{\rm c}^+ \pi^-$ measurement in Run 3 and 4

