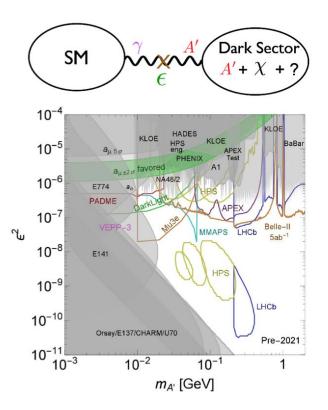
Beyond hadronic physics @JLAB

Mariangela Bondì INFN - Sezione di Roma Tor Vergata Università di Roma Tor Vergata

M1.

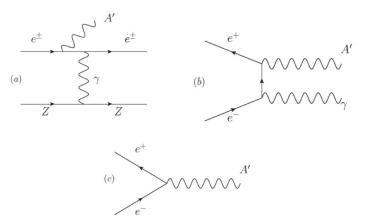

Outline

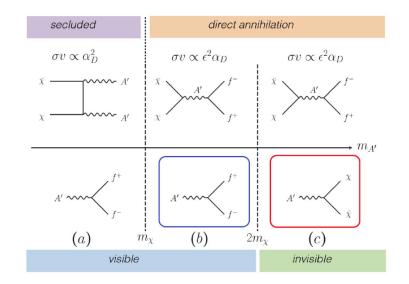
- Introduction to vector-mediated Light Dark Matter
- ✤ A' searches @ JLAB
 - > APEX
 - > HPS
 - BDX-mini and BDX
- LDM opportunities with a primary e+ beam
 - > PADME-like
 - Missing energy approach
- Opportunities with secondary beams
 - > Neutrino beam
- Conclusions

Vector mediated Light Dark Matter

- Plenty of cosmological/astrophysical observations: anisotropies, galaxy rotation curves, gravitational lensing, cluster collisions...
- No hints on DM particle properties (mass, cross section)
- "vector-portal": DM-SM interaction through a new U(1) gauge-boson ("dark photon") coupling to electric charge¹
- Model parameters:
 - > Dark photon mass mA', and coupling to electric charge ϵ
 - Dark matter mass mX, and coupling to dark photon gD
- Experimental searches:
 - A comprehensive LDM experimental program must investigate both the existence of X particle and dark photons.

CMB


Dark photon production and decay


Three main LDM production mechanisms in fixed-target experiment:

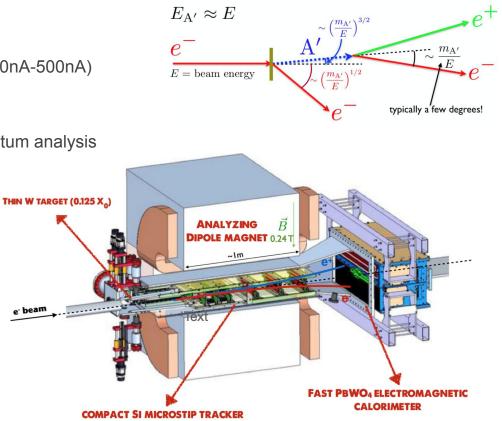
a) A'-stralung : scales as $\epsilon^2 Z^2 \alpha^3,$ forward-boosted A' emission

b) e+e- annihilation: scales as $\epsilon^2 Z \alpha^2$, forward-backward emission in the CM

c) Resonant e+e- annihilation: scales as $\epsilon^2 Z \alpha$. Breit-Wigner like cross section with $M_{A'} = \sqrt{2m_e E}$

a) **secluded scenario**: provides no thermal target for accelerator- based experiments. Any ϵ value is allowed

b) **visible decay** scenario (although off-shell XX decay is allowed)


c) **invisible decay** scenario: A' decays to Dark Sector *invisible* particles

HPS: Heavy Photon Search

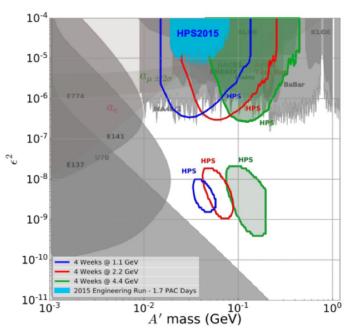
e- fixed target experiment installed in HALL B searching for dark photon visible decay

e beam

- CEBAF e- beam: energy (1.1-6.6 GeV) current (50nA-500nA) *
- Thin W target : $10^{-3}X0$ *
- Dipole magnet and 6-layers Si-tracker for momentum analysis * and vertexing
- PbWO4 calorimeter for triggering and PID *
- Signatures: *
 - Resonant search >
 - detached vertex search >

HPS: Heavy Photon Search

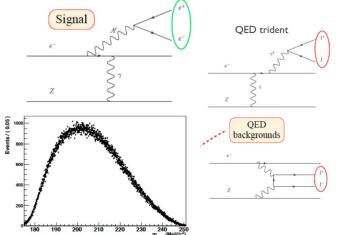
- In 2014 approved by PAC41 for "high impact status". Beam time approved: 180 PAC days
- First engineering run in 2015. Results published in PRD rapid communication
- Many measurement campaign at different energy beam
 - > 2015 Engineering run: Beam 1.05GeV @ 50nA on W target (~2 days)
 - 2016 Engineering run: Beam 2.3GeV @ 200nA on W target (~5days)
 - > 2019 physics run: Beam 4.55 GeV @ 100nA on W target (~14 days)
 - 2021 physics run: Beam 3.74-1.92GeV @120-70nA on W target (~50 days)
- Collaboration busy with calibration and analysis of 2019 and 2021 data

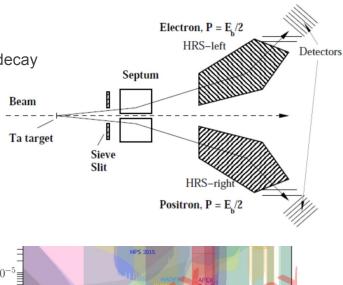

PHYSICAL REVIEW D 98, 091101(R) (2018)

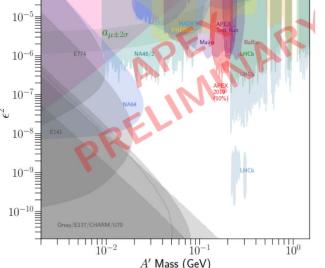
id Communications Editors' Suggestion

Search for a dark photon in electroproduced e^+e^- pairs with the Heavy Photon Search experiment at JLab

P. H. Adrian¹, N. A. Baltzell,² M. Battaglieri,² M. Bondf,⁴ S. Boyarinov,² S. Bueltmann⁵, V. D. Burkert,² D. Calvo,⁶
M. Carpinelli,^{7,3} A. Celentano,³ G. Charles,⁹ L. Colaneri,^{10,11} W. Cooper,¹¹ C. Cuevas,⁷ A. D'Angelo,^{10,11} N. Dashyan,¹³
M. De Napoli,⁸ R. De Vita,³ A. Deur,⁷ R. Dupre,⁴ H. Egivan,⁷ L. Elouadrinir,⁷ R. Essig,¹⁴ V. Fadeyev,¹⁵ C. Field,¹⁴
A. Filippi,⁷ A. Freyberger,⁷ M. Garçon,⁶ N. Gevorgyan,⁶ F. X. Girod,⁷ N. Graf,¹ M. Graham,⁷ K. A. Grifficen,¹⁵
A. Grillo,¹⁵ M. Guidal,⁷ R. Herbst,¹⁴ M. Holtron,¹⁵ J. Jaros,¹ G. Kalicy,⁷ M. Khandaker,¹⁷ V. Kubarovsky,²
E. Leonora,⁴ K. Livingston,²⁰ T. Maruyama,¹ K. McCarty,¹³ J. McCormick,¹ B. McKinnon,³⁰ K. Morina,¹⁸ S. Paul,¹⁷
N. Randazzo,⁴ B. Raydo,² B. Resse,¹ A. Rizzo^{10,11} P. Schuster,¹²¹ Y. G. Sharabian,² G. Simig^{222,23} A. Simonyan,³
V. Sipala,⁷⁸ D. Sokhan,³⁰ M. Solt,¹ S. Stepanyan,²¹ H. Szumila-Vance,²⁵ N. Toro,¹²¹ S. Uenura,¹ M. Ungaro,² H. Voskanyan,¹³ L. B. Weinstein,² B. Wojtsekhowski,² and B. Yale¹⁹

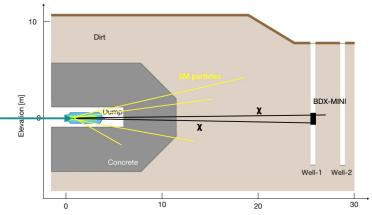


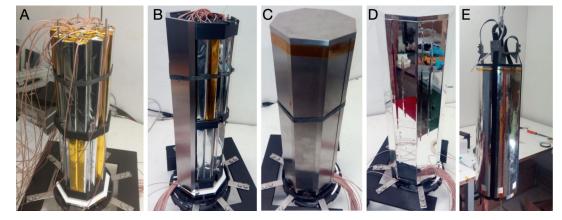

6


APEX: A-Prime EXperiment

e- fixed target experiment installed in HALL A searching for dark photon visible decay

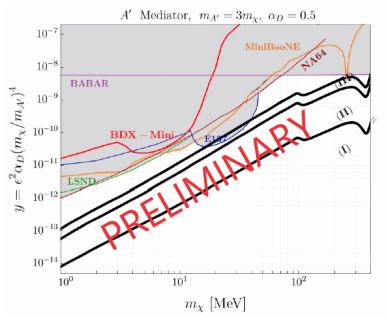
- Dark photon searched as a narrow resonance in e+e- mass over a smooth QED background
- Two High Resolution Spectrometers (HRSs) in coincidence to measure events with an e- in one arm and e+ in the other
- Standard HRS detector stack in both arms: Scintillators: S0 and S2(timing), VDC (tracking), Cherenkov and Calorimeters (PID)
- 2010 test run: beam 2.2GeV@150uA on tantalum foil
- Full run in 2019: accumulated over 100x statistics than test run




BDX-MINI: Beam Dump eXperiment - MINI

e- beam dump "pilot" experiment searching for LDM particles in the MeV-GeV mass range

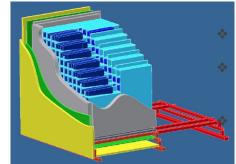
- CEBAF 2 GeV e- beam (~150uA) impinging on Hall-A beam dump
- secondary beam of X particles produced through all previously discussed physics reactions
- Detector¹ placed in a pipe 25 m behind the dump
 - Compact PbWO4 detector (3.7x10⁻³ m³)
 - > Veto system: active (plastic scintillator) and passive (tungsten) layers
- X scattering on atomic e- through A' exchange, recoil releasing energy O(100MeV)


Distance [m]

BDX-MINI: Beam Dump eXperiment - MINI

e- beam dump experiment searching for LDM particles in the MeV-GeV mass range

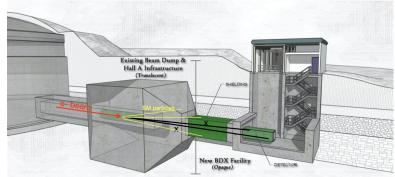
- Measurement took place in spring-summer 2020
 - ➢ collected ~3x10²¹ EOT
 - beam energy: 2.2 GeV
 - beam current up to 150 uA
 - beam-on and beam-off measurements alternate (50% beam-on time)
 - beam-off period used to estimate cosmic backgrounds
- Despite the reduced size, BDX-MINI exclusion limits comparable to previous experiment

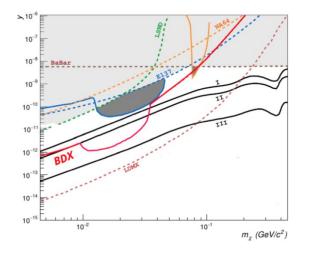


BDX: Beam Dump eXperiment

Natural evolution of BDX-mini: 11 GeV e- beam - approved experiment at Jefferson Lab

JLAB offers the best condition for BDX

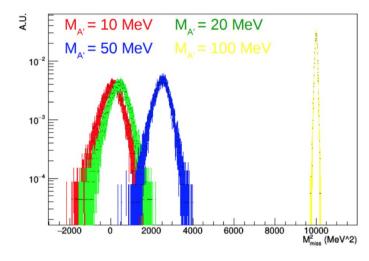

- A high energy beam: 11 GeV
- The highest available electron beam current: ~65uA (currently)
- Charge : 10²² EOT
- Fully parasitic wrt Hall-A physics program
- New facility to be built 25m behid Hall-A beam dump
 - Passive shielding layer between beam dump and detector to reduce SM beam-related background
 - Sizeable overburden (~10 m water-equivalent) to reduce cosmogenic background
 - New underground hall (~8m) at 25 m downstream hall-A beam dump that will host the detector
- Detector (1m3) with 2 components: Ecal + Veto system

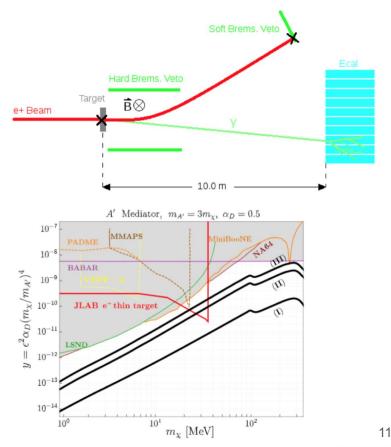


ECal: CsI(TI) crystals + SiPM

Dual active-veto layer made of plastic scintillator counters +WLS+SiPM

Passive lead layer surrounding ECAL

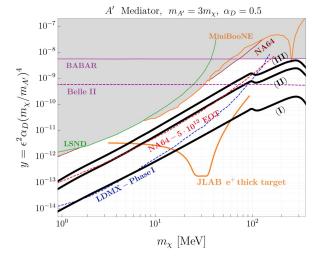


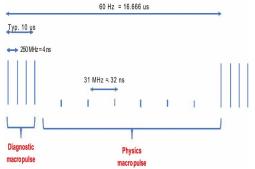

LDM searches with e+ beam: PADME-like approach

- ✤ 100 nA, 11 GeV e+ beam impinging on 100 um thin carbon target
- A' produced via e+e- -> γA' process
- outgoing photon measured in electromagnetic calorimeter and missing mass computed

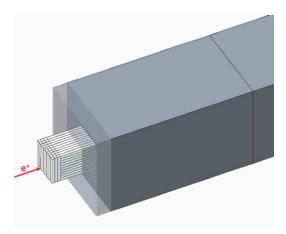
$$M_{\rm MISS}^2 = (P_{\rm e} + P - P_{\rm y})^2$$

signal: a peak in the missing mass distribution over a smooth SM background


M. Battaglieri et al., Light dark matter searches with positrons Eur. Phys. J. A 57, 253 (2021)

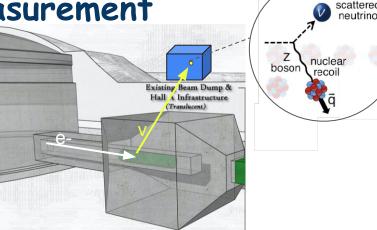

LDM searches with e+ beam: thick target approach

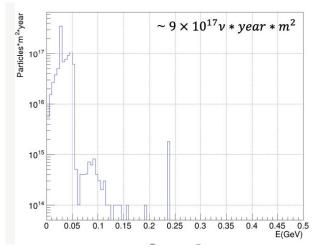
- Missing energy experiment with a 11 GeV positron beam
- e+ impinging on active thick target (ECAL): A' produced via resonant process e+e- -> A'
- Iarge missing_energy as LDM production signature


$$E_{miss} = E_{beam} - E_{ECAL}$$

- Signal: a peak in the missing energy distribution at a value depending solely on the dark photon mass
- HCAL to detect neutral particles escaping the ECAL mimicking signal

A non-trivial time structure of the beam is required to avoid e^+ beam pile-up in the detector.


12


Secondary v beam: CEvNS measurement

- A large flux of neutrinos is produced in the Hall-A beam-dump from π and μ decay
- Energy range ~few MeVs O(100MeV)
- flux: 10^{18} v/m² at ~ 10 m above the dump for 10^{22} EOT

Coherent Elastic v-Nucleus Scattering

- The largest cross section among neutrino scattering channels for Ev < 100 MeV</p>
- Cross section is approximately proportional to N²
- Recoil energy transfer to the nucleus is O(10keV)
- COHERENT has established the first detection of CEvSN
- CEvSN provides info on: weak mixing angle, neutron radius of nuclei, non standard interactions (NSI) mediated by exotic particles
- Possibility to run an CEvNS experiment at JLAB currently under study

Conclusions

- Jefferson Lab features a rich BSM experimental program (HPS, APEX, BDX-MINI)
- New developments are expected in the nearby future: the Beam Dump eXperiment can run in the next few years provided the new hall is built
- The realization of a positron beam at JLAB paves the way to new competitive LDM experiments
- Secondary v beam produced in the HALL-A dump can be exploited to explore "hot" physics scenario (CEvNS)