The FAMU experiment: measurement of the ground state hyperfine splitting of muonic hydrogen

Cecilia Pizzolotto

FAMU Collaboration

FAMU <u>F</u>isica degli <u>A</u>tomi <u>MU</u>onici

≈60 researcher20 institutions

2

INFŃ

Where: Rutherford Appleton Laboratory - UK

The brightest pulsed muon beam facility in the world!

3

INFŃ

FAMU aim: Measure HFS of muonic hydrogen ground level

The properties of the proton can be studied with

Scattering or Spectroscopy experiments

Muonic hydrogen (μ p) is more sensitive to nuclear structure effects

Information on the magnetic structure of the proton is brought by the hyperfine splitting (HFS) of μp , this arises from the interaction between the magnetic moment of the muon and the magnetic moment of the proton.

Ground state level is split by the hyperfine interaction into triplet (F=1) and singlet (F=0) states

5

FAMU goals:

- measure the hyperfine splitting (hfs) in the ground state of muonic hydrogen with a relative accuracy better than 10⁻⁵
- deduce the **Zemach radius** with a relative accuracy better than **1%**.

This measurement will provide a benchmark for the models of the proton.

The proton charge radius

- Need of **precision experiments** carried with different techniques
- **Importance of correct estimation** of systematic uncertainties

FAMU method and workflow

- Create muonic hydrogen and wait for thermalization;
- Shoot laser at variable wavelength (λ₀ ~6.8μ), when it matches the resonance: spin is flipped: μ⁻p(↑↓) → μ⁻p(↑↑);
- De-excitation and acceleration: µ⁻p(个个) hits a H atom
 It is depolarized back to µ⁻p(个↓) and is accelerated by ~120 meV;
- μ^{-} are transferred to heavier gas with energy-dependent rate;
- λ_0 resonance is determined by the maximizing the time distribution of μ^- transferred events.

FAMU Laser

Characteristics:

Wavelength range	6800 ± 50 nm
Energy output	> 1 mJ
Linewidth	< 0.07 nm
Tunability steps	0.03 nm
Pulses duration	10 ns
Repetition rate	25 Hz

Absolute calibration of the $6.8\mu m$ energy with CH₄ line absorption

M1 - Mirror HR 1064 nm, M2 - Mirror HR 1262 nm, M3 - Mirror HR 1064&1262&6785 nm, M4 - Mirror HR 6785 nm, T1 and T2 - telescopes, BS1 - beamsplitter/beamsampler 1064 nm, BS2 - beamsplitter/beamsampler 1262 nm, BS3 - beamsplitter/beamsampler 6785 nm, DC1 - dichroic mirror (reflecting 1064 nm, transmitting 1262 nm), DC2 - dichroic mirror (reflecting 1064 nm and 1262 nm, transmitting 6785 nm), NL - nonlinear crystal, MU - measuring units (wavelenght meter, energy meter, dimensions)

9

FAMU Timeline

10

INFŃ

First measurement of the oxygen transfer rate

- measured for the first time the temperature dependence of the transfer rate for oxygen in the range 70-336 K
- the energy dependence of the transfer rate increases by a factor 8 for energies in 0.01-0.08 eV

This dependence is **very important** for the FAMU experiment where the **energy dependence** of the transfer rate is used **a signature**

11

FAMU Timeline

12

Set up at Port1 at RAL

13

FAMU Set up

FAMU set up

15

Target and cavity

target

cavity

Port 1 February 2020

C.Pizzolotto INFN - 10/05/2022 - FAMU

FAMU Timeline

Laser: new setup and further studies at Trieste

New non linear crystals

Energy curves BaGa₇Se₄ 10x9x28mm

C.Pizzolotto INFN - 10/05/2022 - FAMU

Optical cavity

The cavity number of reflections remain stable against small variations of the incident angle (tip/tilt movement)

FAMU

20

ÍNFŃ

Detectors: mechanical integration

Trieste, October 2021

C.Pizzolotto INFN - 10/05/2022 - FAMU

Conclusions

- FAMU aims to **measure the hyperfine splitting** in the ground state of muonic hydrogen with a relative accuracy better than 10⁻⁵
- Assembly of the complete setup is foreseen in summer 2022
- First data taking at the end of 2022

About 1 month beam time, a scan of ~30 frequency points

Thank you for your attention

C.Pizzolotto INFN - 10/05/2022 - FAMU

