Heavy ion double charge exchange reactions and their role in probing double beta decay nuclear matrix elements

J. I. Bellone^{1,2}, D. Gambacurta², M. Colonna², H. Lenske³

 ¹Università degli Studi di Catania, Catania, Italy
 ² Laboratori Nazionali del Sud, INFN, I-95123 Catania, Italy
 ³Institut für Theoretische Physik, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany

European Research Council Established by the European Commission

Reaction mechanisms for describing Heavy Ion Double Charge Exchange

 $A(Z_A, N_A) + a(Z_a, N_a) \to B(Z_A \pm 2, N_A \mp 2) + b(Z_a \mp 2, N_a \pm 2)$

J.I. B., S. Burrello, M. Colonna, J.A. Lay, H. Lenske, PLB 807 (2020) 135528 F. Cappuzzello et al. Progress in Particle and Nuclear Physics

F. Cappuzzello et al., Progress in Particle and Nuclear Physics, submitted

H. Lenske, IOP Conf. Series: Journal of Physics: Conf. Series 1056 (2018) 012030
E. Santopinto *et al.*, Phys. Rev. C 98 061601 (R) (2018)
H. Lenske et al., Progress in Particle and Nuclear Physics 109 (2019) 103716
F. Cappuzzello et al., Progress in Particle and Nuclear Physics, submitted

...focusing on sequential Double Charge exchange process...

$$A(Z_A, N_A) + a(Z_a, N_a) \to B(Z_A \pm 2, N_A \mp 2) + b(Z_a \mp 2, N_a \pm 2)$$

(
$$\beta$$
) $B(Z_A \pm 2, N_A \mp 2) + b(Z_a \mp 2, N_a \pm 2)$
(γ) $C(Z_A \pm 1, N_A \mp 1) + c(Z_a \mp 1, N_a \pm 1)$
(α) $A(Z_A, N_A) + a(Z_a, N_a)$

Analogies between dSCE and $2\nu\beta\beta$ matrix elements

$$\frac{dSCE}{cross section} d\sigma_{\alpha\beta}^{(DSCE)} = \frac{m_{\alpha}m_{\beta}}{(2\pi\hbar^{2})^{2}} \frac{k_{\beta}}{k_{\alpha}} \frac{1}{(2J_{a}+1)(2J_{A}+1)} \sum_{M_{a},M_{A} \in \alpha;M_{b},M_{B} \in \beta} \left| M_{\alpha\beta}^{(2)}(\mathbf{k}_{\alpha},\mathbf{k}_{\beta}) \right|^{2} d\Omega$$

$$\frac{dSCE transition matrix element}{M_{\beta\alpha}^{(2)}(\mathbf{k}_{\beta},\mathbf{k}_{\alpha})} = \int d^{3}p_{1}d^{3}p_{2} \int_{C_{+}} \frac{dv}{2i\pi} \sum_{S_{1},S_{2}} \prod_{\alpha\beta}^{(S_{2}S_{1})}(\mathbf{p}_{2},\mathbf{p}_{1};v) = \sum_{cC} \frac{F_{S_{2}}^{(SC)}(\mathbf{p}_{2}) \cdot F_{S_{1}}^{(bc)}(\mathbf{p}_{2}) F_{S_{1}}^{(ca)}(\mathbf{p}_{1}) \cdot F_{S_{1}}^{(CA)}(\mathbf{p}_{1})}{v - (E_{A} - E_{C} + E_{a} - E_{c})}$$

$$\int \frac{d^{3}k_{\gamma}}{(2\pi)^{3}} N_{\beta\gamma}(\mathbf{p}_{2}) V_{S_{2}T}(p_{2}^{2}) \frac{\tilde{S}_{\gamma}^{\dagger}}{\omega_{\alpha} - v - T_{\gamma} + i\eta} N_{\gamma\alpha}(\mathbf{p}_{1}) V_{S_{1}T}(p_{1}^{2}).$$

$$I. Lenske, J.I. B., M. Colonna, D. Gambacurta, Universe 7 (2021) 4, 98$$

$$M^{(2\nu)} = g_{V}^{2} \frac{\left\langle 0_{F}^{+} | \sum_{n,n'} \tau_{n}^{\dagger} \tau_{n'}^{\dagger} | 0_{I}^{+} \right\rangle}{\frac{1}{2}(Q_{\beta\beta} + 2m_{e}c^{2}) + \langle E_{0+,N} \rangle - E_{I}} - g_{A}^{2} \frac{\left\langle 0_{F}^{+} | \sum_{n,n'} \tau_{n}^{\dagger} \tau_{n'}^{\dagger} \sigma_{n} \cdot \sigma_{n'}| 0_{I}^{+} \right\rangle}{\frac{1}{2}(Q_{\beta\beta} + 2m_{e}c^{2}) + \langle E_{1+,N} \rangle - E_{I}}$$

dSCE NME

2νββ ΝΜΕ

Sequential DCE Cross Section - ⁴⁰Ca(¹⁸O,¹⁸Ne_{g.s.})⁴⁰Ar_{g.s.}

...focusing on sequential Double Charge exchange process...

$$A(Z_A, N_A) + a(Z_a, N_a) \to B(Z_A \pm 2, N_A \mp 2) + b(Z_a \mp 2, N_a \pm 2)$$

J.I. B., S. Burrello, M. Colonna, J.A. Lay, H. Lenske, PLB 807 (2020) 135528

H. Lenske, J.I. B., M. Colonna, D. Gambacurta, Universe 7 (2021) 4, 98

Sequential DCE Cross Section - s-channel formalism

• dSCE transition matrix element in momentum space

H. Lenske, J.I.B., M. Colonna, D. Gambacurta, Universe 7(4):98 (2021)

$$\mathcal{T}(\mathbf{k}_{\alpha},\mathbf{k}_{\beta}) = \int d^{3}q_{1} \int d^{3}q_{2} \,\tilde{\rho}_{1P}(\mathbf{q}_{1})\tilde{\rho}_{1T}(\mathbf{q}_{1})\tilde{V}_{PT}(\mathbf{q}_{1})\tilde{\rho}_{2P}^{*}(\mathbf{q}_{2})\tilde{\rho}_{2T}^{*}(\mathbf{q}_{2})\tilde{V}_{PT}^{*}(\mathbf{q}_{2})N_{\alpha\beta}(\mathbf{q}_{1}-\mathbf{q}_{2})$$

• changing variables $\begin{cases} \mathbf{q}_1 + \mathbf{q}_2 = \xi \\ \mathbf{q}_1 - \mathbf{q}_2 = \eta \end{cases}$

$$\frac{1}{4} \int d^3\xi d^3\eta \,\tilde{\rho}_{1P}(\frac{\xi+\eta}{2})\tilde{\rho}_{1T}(\frac{\xi+\eta}{2})\tilde{V}_{PT}(\frac{\xi+\eta}{2})\tilde{\rho}_{2P}^*(\frac{\xi-\eta}{2})\tilde{\rho}_{2T}^*(\frac{\xi-\eta}{2})\tilde{V}_{PT}(\frac{\xi-\eta}{2})N_{\alpha\beta}(\eta)$$

•
$$\tilde{\rho}_{1P}(\frac{\xi+\eta}{2})\tilde{\rho}_{2P}^*(\frac{\xi-\eta}{2}) \to \frac{1}{\overline{\xi}^3}\int d^3\xi\,\tilde{\rho}_{1P}(\frac{\xi+\eta}{2})\tilde{\rho}_{2P}^*(\frac{\xi-\eta}{2}) = \frac{1}{\overline{\xi}^3}\int d^3r\,e^{i\boldsymbol{\eta}\cdot\mathbf{r}}\rho_{1P}(\mathbf{r})\rho_{2P}^*(\mathbf{r}) \equiv \tilde{\rho}_P^{2BTD}(\boldsymbol{\eta})$$

• Thus, the only quantity depending on ξ is $\int d^3\xi \, \tilde{V}_{PT}(\frac{\xi+\eta}{2}) \tilde{V}_{PT}^*(\frac{\xi-\eta}{2}) = \int d^3r \, e^{i\boldsymbol{\eta}\cdot\mathbf{r}} |V(\mathbf{r})|^2 \equiv \tilde{V}_{NN}^{dSCE}(\boldsymbol{\eta})$

$$\mathcal{T}(\mathbf{k}_{\alpha},\mathbf{k}_{\beta}) \simeq \int d^{3}\eta \, \tilde{\rho}_{P}^{2BTD}(\boldsymbol{\eta}) \tilde{\rho}_{T}^{2BTD}(\boldsymbol{\eta}) \tilde{V}_{NN}^{dSCE}(\boldsymbol{\eta}) N_{\alpha\beta}(\boldsymbol{\eta}) \quad \text{like SCE !}$$

Sequential DCE Cross Section - s-channel formalism 40 Ca (18 O, 18 Ne) 40 Ar at E_{lab} = 275 MeV

SUMMARY and CONCLUSIONS

Sequential DCE (dSCE) cross section calculations for the pilot system allow to recover the order of magnitude of the data, but for heavier nuclear systems dSCE the data are progressively underestimated:

→ possible effect of nuclear deformation not properly treated (already affecting SCE)
 ---> further improvement of nuclear structure inputs → check the effect of nuclear deformations
 → try to establish a protocol allowing to better reproduce experimental energy spectra

 \rightarrow contribution of Majorana-like DCE reaction mechanism, which should be coherently added to the sequential one

to refine dSCE - s-channel fomalism in order to be able to extract separately projectile and target nuclear matrix elements from DCE cross section measurements

SUMMARY and CONCLUSIONS

- Sequential DCE (dSCE) cross section calculations for the pilot system allow to recover the order of magnitude of the data, but for heavier nuclear systems dSCE the data are progressively underestimated:
 - → possible effect of nuclear deformation not properly treated (already affecting SCE) further improvement of nuclear structure inputs → check the effect of nuclear deformations
 → try to establish a protocol allowing to better reproduce experimental energy spectra

 \rightarrow contribution of Majorana-like DCE reaction mechanism, which should be coherently added to the sequential one

to refine dSCE - s-channel fomalism in order to be able to extract separately projectile and target nuclear matrix elements from DCE cross section measurements

THANK YOU FOR YOUR ATTENTION !

BACKUPS

Why Heavy Ion Double Charge Exchange (DCE) nuclear reactions?

Heavy Ion Double Charge Exchange (DCE) direct reactions:

 $A(Z_A, N_A) + a(Z_a, N_a) \to B(Z_A \pm 2, N_A \mp 2) + b(Z_a \mp 2, N_a \pm 2)$

• powerful and alternative tool to gain information on $0\nu\beta\beta$ decay Nuclear Matrix Element (NME)

F. Cappuzzello *et al.*, Eur. Phys. J. A (2018) **54** : 72

• $0\nu\beta\beta$ NME information are embedded in HI DCE transition matrix element:

• in momentum space
$$\frac{d^2\sigma}{dE_x d\Omega} = \frac{E_{\alpha}E_{\beta}}{(2\pi\hbar^2c^2)^2} \frac{k_{\beta}}{k_{\alpha}} \frac{1}{(2J_A+1)(2J_a+1)} \sum_{\substack{m_A,m_a\\m_B,m_b}} \mathcal{M}_{\alpha\beta}^{(DCE)}(\mathbf{k}_{\alpha\beta})^2$$
$$\mathcal{M}_{\alpha\beta}(\mathbf{k}_{\alpha\beta}) = \sum_{S,T} \int d^3p \mathcal{K}(\mathbf{k}_{\alpha\beta}, \mathbf{p}) \mathcal{N}^D(\mathbf{k}_{\alpha\beta}, \mathbf{p})$$

 at low momentum transfer, the nuclear structure term containing information on 0vββ NME can be factorized from all the other ingredients entering the HI one-step Charge Exchange cross section

H. Lenske, J. I. Bellone, M. Colonna, J. A. Lay, Phys. Rev. C (2018) 98, 044620 E. Santopinto *et al.*, Phys. Rev. C 98 061601 (R) (2018)

...before analyzing sequential Double Charge Exchange process, let's check Single Charge Exchange reactions ...

J.I. B., S. Burrello, M. Colonna, J.A. Lay, H. Lenske, PLB 807 (2020) 135528

Checks on SCE reactions - ⁷⁶Se(¹⁸O,¹⁸F)⁷⁶As vs ⁷⁶Ge(²⁰Ne,²⁰F)⁷⁶As

	Integrated σ [µb] ; 4°< θ_{lab} < 11.5°				
Energy range (MeV)	⁷⁶ Se(¹⁸ O, ¹⁸ F) ⁷⁶ As		⁷⁶ Ge(²⁰ Ne, ²⁰ F) ⁷⁶ As		
	Exp.	Theo.	Exp.	Theo.	
		Direct SCE		Direct SCE	
[0,3]	77 ± 2	20.1	37 ± 1	5.8	
[0,5]	170 ± 3	36.5	93 ± 2	12.5	
[0,10]	552 ± 6	163	347 ± 4	94.9	

- multi-nucleon transfer mechanism contributions
- discrepancies could also be due to the deformed nature of interacting nuclei not properly accounted for in our nuclear structure inputs
 - \rightarrow part of the strength pushed out of the energy range of interest or at all underestimated?
 - \rightarrow NEWSRs for L = 0 modes are exhausted to a good extent, but how to check higher multipolarities (which dominate in these energy ranges)?

Checks on SCE reactions - ¹¹⁶Cd(²⁰Ne,²⁰F)¹¹⁶In

SCE experimental cross section integrated in θ_{lab} in [4.5°,14.5°] and in [0,0.35] MeV excitation energy range

	Integrated σ [μb] ; 4.5°< θ _{lab} < 14.5° ¹¹⁶ Cd(²⁰ Ne, ²⁰ F) ¹¹⁶ In			
Energy range (MeV)				
	Exp.	Exp. T		
		Transfer SCE	Direct SCE	
[0,0.35]	0.7 ± 0.3	0.31	0.036* 0.042 *	
* using SPP optic and inelastic cham	al potential, evalua nels analysis	ated from elastic		
* using DFOL o	ptical potential,	evaluated from		

elastic and inelastic channels analysis

- discrepancies mainly due to the deformed nature of interacting nuclei not properly accounted for in our nuclear structure inputs
 - \rightarrow part of the strength pushed out of the energy range of interest or simply underestimated?
 - → too much small excitation energy range vs too high nuclear (fragment) level density to asses the quality of nuclear structure inputs used

²⁰ F excited	Direct
states used	SCE σ [µb]
2+	3.69·10 -³
g.s.	4.15·10 ⁻³
3+	1.62 [.] 10 ⁻²
(0.4 MeV- theo.)	1.86·10 ⁻²
4+	5.76·10 ⁻⁷
(0.15 MeV-theo)	6·10 -7
5+	1.64·10 ⁻²
(0.3 MeV-theo.)	1.93·10 ⁻²

DCE state - of - art

• π – N reactions \rightarrow spin – isospin transition operator different from beta decay ones

 $t_{\pi N} = t_{00} + t_{10}\sigma \cdot (\mathbf{k} \times \mathbf{k}') + (t_{01}^{(1)} + t_{01}^{(2)}(\tau_{\pi} \cdot \tau_{N}) + t_{11}\sigma \cdot (\mathbf{k} \times \mathbf{k}'))(\tau_{\pi} \cdot \tau_{N}) \quad (acting twice)$

J. Alster and J. Warszawski, Phys. Rep.52, 2 (1979) 87-132 D. S. Koltun and M. K. Singham, Phys. Rev. C 39, (1989) 704

 \rightarrow no information on $\beta\beta$ decay NMEs !

• Light Ion DCE reactions

 \rightarrow more than 2 fragments in the final channel ! \rightarrow difficulties in measurement and reconstruction of trajectories

• Heavy Ion DCE reactions \rightarrow Past attempts \rightarrow low statistics \rightarrow high background

J. Cerny, 3rd International Conference on Nuclei Far from Stability, Cargese, France, 19 - 26 May 1976, pp.225-34 (CERN-1976-013).

 \rightarrow Brink's kinematical conditions matched

multi-nucleon transfer dominates

D.M. Drake et al., Phys. Rev. Lett. 45, 1765 (1980)

 \rightarrow no information on $\beta\beta$ decay NMEs !

 \rightarrow **<u>Recent attempts</u>** \rightarrow high resolution experiments allow to reach:

- significant statistics
- low background

H. Matsubara et al., Few-Body System 54, 1433 (2013)

M. Takaki et al., CNS Ann. Rep. 94, 9 (2014)

F. Cappuzzello et al., Eur. Phys. J. A (2015), 51

Two-body Transition Densities - s-channel formalism

 $^{18}O \rightarrow ^{18}Ne$

 ${}^{40}Ca \rightarrow {}^{40}Ar$

