

Measurement of light (anti)nuclei production with ALICE

Alessandro Balbino Politecnico and INFN - Torino

on behalf of the ALICE Collaboration

10-05-2022

Nuclear matter production

pp collisions

Pb—Pb collisions

Quinto Incontro Nazionale di Fisica Nucleare INFN 2022

Z

• QGP time evolution:

in Pb—Pb collisions:

quark—gluon plasma (QGP)

- chemical freeze-out ($T_{\rm ch} \sim 150 \, {\rm MeV}$)
- kinetic freeze-out ($T_{\rm kin} \sim 110 \,{\rm MeV}$)
- Nuclei are produced in the latest stages of the collision and can be used as powerful tools to study hadronization

Statistical Hadronization Model (SHM) [2]

Quinto Incontro Nazionale di Fisica Nucleare INFN 2022

- Hadron abundances are fixed at the chemical freeze-out assuming statistical equilibrium
- Expected production yields:

$$dN/dy \propto \exp(-\frac{m}{T_{\rm ch}})$$

where T_{ch} is the chemical freeze-out temperature

 \rightarrow large sensitivity to T_{ch} for nuclei (large m)

- Pb—Pb collisions: large reaction volume, global conservation of quantum numbers
 - → grand canonical ensemble
- Small systems (pp, p—Pb collisions): local conservation of quantum numbers
 - canonical ensemble

[2] A. Andronic et al., *Phys. Lett. B* **697**, 203 (2011) [3] A. Andronic et al., *Nature* **561**, 321-330 (2018)

Coalescence model [4]

- (Anti)nucleons which are close in phase space at the freeze-out can form an (anti)nucleus via coalescence
- Key parameter: coalescence parameter B_A

$$B_{A} = \frac{E_{A} \frac{d^{3} N_{A}}{d^{3} p_{A}}}{\left(E_{p} \frac{d^{3} N_{p}}{d^{3} p_{p}}\right)^{A}}$$

where A is the mass number of the nucleus and $p_{\rm p} = p_{\rm A}/A$

- Coalescence probability is directly related to B_A
- Coalescence probability depends on the system size
 - \implies small system size \iff large B_A
 - \rightarrow large system size \leftrightarrow small B_A

[4] S. T. Butler, C. A. Pearson. *Phys. Rev.* **129**, 836 (1963)

The ALICE experiment

- Excellent particle identification (PID)
- Most suited LHC experiment to study light (anti)nuclei production

[5] ALICE Collaboration, J. Instrum. 3, 08 (2008)

a. b.	ITS ITS	SPD (Pixel) SDD (Drift)
C.	ITS	SSD (Strip)
d.	V0	and TO
e.	ΗMI	5

- Tracking and vertex reconstruction
- Low momentum **PID**

Time Projection Chamber (**TPC**)

- Tracking
- **PID** via energy loss measurement
 - , $\sigma_{\mathrm{d}E/\mathrm{d}x} \sim 5.5 \,\%$ in pp collisions
 - , $\sigma_{dE/dx} \sim 7 \%$ in Pb—Pb collisions

Time Of Flight (**TOF**)

- **PID** via β measurement
 - , $\sigma_{\rm TOF} \sim 70~{\rm ps}$ in pp collisions
 - , $\sigma_{\rm TOF} \sim 60 \ {\rm ps}$ in Pb—Pb collisions

$\mathbf{V0}$

- Trigger
- Multiplicity/centrality determination

Nuclei identification

ALI-PERF-101240

- Low- p_T region: identification via dE/dxmeasurement in TPC
- Excellent separation of different nuclei species depending on the nuclear charge

• High- p_T region: identification via β measurement using time-of-flight information

Light nuclei p_T spectra in pp collisions

Quinto Incontro Nazionale di Fisica Nucleare INFN 2022

- Light nuclei $p_{\rm T}$ spectra measured for different multiplicity classes in small collision systems
- Same behaviour for each nucleus species: spectra hardening with increasing multiplicity
- *p*_T spectra fitted with Lévy-Tsallis function to extrapolate in the unmeasured regions

Light nuclei p_T spectra in Pb—Pb collisions

Even more evident in Pb—Pb collisions: spectra hardening with increasing centrality • Effect of collective motion (radial flow) also observed for other light-flavour hadrons

The coalescence parameter B_A in pp collisions

- (size of particle-emitting source decreases with $p_{\rm T}$)

[7] ALICE Collaboration, Eur. Phys. J. C 82, 289 (2022) [8] M. Gyulassy et al., *Nucl.* Phys. A **402**, 596-611 (1983)

• Almost flat B_2 in narrow multiplicity intervals (in agreement with simple coalescence) • B_3 rises significantly with p_T/A : predicted by state-of-the-art coalescence model [8]

The coalescence parameter B_A in pp collisions

• B_A rises significantly with increasing p_T/A and with decreasing multiplicity

[8] M. Gyulassy et al., *Nucl.* Phys. A **402**, 596-611 (1983) [9] ALICE Collaboration, *JHEP* **01**, 106 (2022)

in high-multiplicity pp collisions: predicted by state-of-the-art coalescence model [8]

The coalescence parameter *B_A* in Pb—Pb collisions

- collisions: predicted by state-of-the-art coalescence model [8]

[8] M. Gyulassy et al., *Nucl.* Phys. A **402**, 596-611 (1983)

• B_A rises significantly with increasing p_T/A and with decreasing centrality in Pb—Pb

Challenging measurement for heavier light nuclei is possible: B_4 in Pb—Pb collisions

Multiplicity dependence of B_A

- Two regimes observed:
 - almost flat for low multiplicity
 - decreasing for large system size

• Smooth evolution of B_A with multiplicity: no dependence on the collision system

 \rightarrow coalescence probability depends on the system volume

Yield ratios

- d/p, ³H/p and ³He/p ratios increase smoothly with multiplicity without any dependence on the collision system or energy
- intermediate multiplicity region

Models can qualitatively describe nuclei ratios to protons, except for A > 2 in the

Deuteron production in jets

[10] ALICE Collaboration, Phys. Lett. B 819, 136440 (2021)

Quinto Incontro Nazionale di Fisica Nucleare INFN 2022

- d production from hard processes as a function of $p_{\rm T}$
- Leading particles with $p_{\rm T}^{\rm lead} > 5 \ {\rm GeV}/c$ are used as proxies for jets
- The number of deuterons produced in-jet is $\sim 10\%$ of the one in the underlying event, increasing with $p_{\rm T}$
- The model calculation (PYTHIA8 + coalescence afterburner) can describe the data

B₂ in jets

ALI-PREL-506107

Quinto Incontro Nazionale di Fisica Nucleare INFN 2022

- The **in-jet** yield is evaluated as the difference between the yields in the towards and in the transverse regions
- In-jet B_2 is ~ 10/15 times larger than B_2 in the underlying event
- PYTHIA8.3 (reaction-based deuteron production) can properly describe the B_2 behaviour in-jet and in the underlying event within the model uncertainties

Conclusions

- The ALICE experiment has measured light nuclei production in small and large collision systems at different energies
- B_A , d/p, ³He/p and ³H/p: no dependence on the collision system but only on the system size at freeze-out
- Deuteron production in jets: significant difference between B_2 in-jet and in the underlying event
- Light nuclei production mechanism: more data (LHC Run 3 is approaching) and more precise theoretical model predictions are needed

