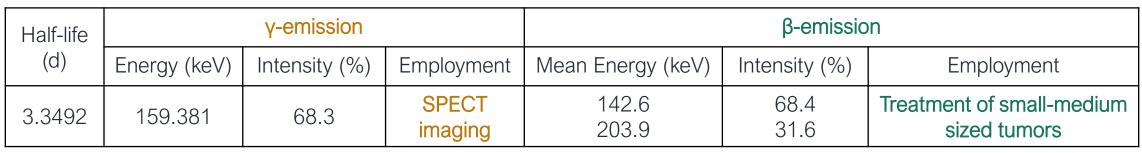


PROTON-INDUCED NUCLEAR REACTIONS ON NATV AND 49TI FOR THE THERANOSTIC 47SC PRODUCTION: PRELIMINARY CROSS-SECTION RESULTS

De Dominicis L.^{1,2}, Cisternino S.^{1,3}, Haddad F.⁴, Mou L.¹, Pupillo G.¹

¹Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Legnaro (INFN-LNL), Padova.
²Dipartimento di Fisica e Astronomia, Università di Padova.
³Dipartimento di Ingegneria Industriale, Università di Padova.
⁴Subatech Laboratory, IMT Atlantique, Université de Nantes and ARRONAX, Nantes, France.


Olucia.de.dominicis@Inl.infn.it

MED

Lucia De Dominicis, PhD student

⁴⁷SC DECAY PROPERTIES

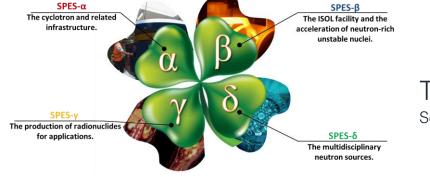
⁴⁷Sc is a promising **theranostic** radionuclide for the realization of new radiopharmaceuticals due to its emissions.*

- Its half-life is long enough for labeling molecules with a slow biodistribution profile.
- Its lack of clinical employment is mainly due to its scarce availability → production only at reactors.

Is the ⁴⁷Sc production at cyclotrons possible?

Lucia De Dominicis

*Therapeutic Radiopharmaceuticals Labelled with New Emerging Radionuclides (⁶⁷Cu, ⁴⁷Sc, ¹⁸⁶Re).

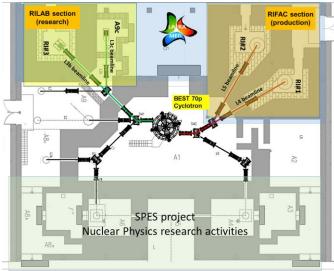

Coordinated Research Project (CRP) by the International Atomic Energy Agency IAEA (2016-2019).

11 maggio 2022

Lucia De Dominicis

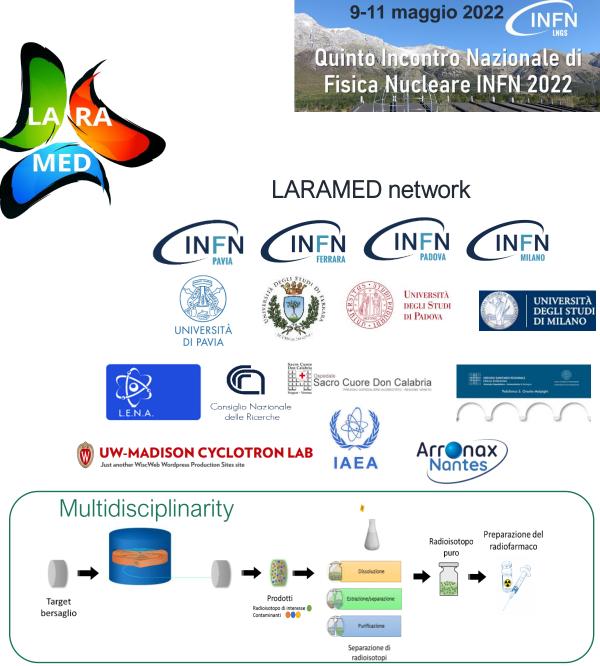
SPES @ LNL: THE FACILITY

The SPES project


Selective Production of Exotic Species

Tunable energy: 35-70 MeV High output current: 500 μ A Dual extraction \rightarrow fundamental and applied physics

RILAB Radiochemistry Lab Provide and the second floor Cyclotron a& SPES ISOL labs Radioisotopes research area (LARAMED)



LARAMED PROJECT

LAboratory of RAdionuclides for MEDicine

LARAMED projects				
LARAMED (2012-2016)	LAboratory of RAdionuclides for MEDicine			
APOTEMA (2012-2014) TECHNOSP (2015-2017)	Accelerator-Tc-99m alternative (direct) production route through hospital cyclotrons			
IAEA CRP (2011-2015)	'Coordinated Research Project ' (CRP) on "Alternative, non HEU-based, Tc-99m /Mo99 supply"			
COME (2016)	COpper MEasurement (Cu-67)			
PASTA (2017-2018)	Production with Accelerator of Sc-47 for Theranostic Applications			
IAEA CRP (2016-2019)	CRP on "Radiopharmaceuticals Labelled with New Emerging Radionuclides Cu-67, Re-186, Sc-47"			
TERABIO (2016-2019)	High Power Target concepts R&D			
E_PLATE (2018-2019)	High intensity vibrational powder plating			
METRICS (2018-2020)	Multimodal pET/mRi Imaging with Cyclotron-produced Mn-52/51 and stable paramagnetic Mn iSotopes			
REMIX (2021-2023)	Research on Emerging Medical radIonuclides from the X-sections			
TOTEM (2021-2022) TOTEM (magneTron sputtering cyclotrOn TargE Manufacturing)				

⁴⁷SC PRODUCTION: PASTA PROJECT

Production with Accelerator of Sc-47 for Theranostic Applications

Aim of the PASTA project

- Evaluation of the proton-induced nuclear reactions on ^{nat}V and ^{48}Ti .
- Optimization of the production parameters to minimize the co-production of contaminants: ^{44m}Sc (58.61 h, β⁺); ^{44g}Sc (3.97 h, β⁺); ⁴⁶Sc (83.79 d, β⁻); ⁴⁸Sc (43.67 h, β⁻).

^{nat} V targets	composition
--------------------------	-------------

Element	Abundance (%)	
51 V	99.750	
50V	0.250	

✓ ^{nat}V foils purchased

Lucia De Dominicis

Element	Abundance (%)	
⁴⁶ Ti	8.25	
⁴⁷ Ti	7.44	
⁴⁸ Ti	73.72	
⁴⁹ Ti	5.41	
⁵⁰ Ti	5.18	

11 maggio 2022

⁴⁸Ti targets composition

✓ Enriched ⁴⁸Ti metallic powder purchased (500 mg, about 6k€)

Enriched ⁴⁸Ti targets realized with the HIVIPP technique @ LNL

9-11 maggio 2022 Quinto Incontro Nazionale di Fisica Nucleare INFN 2022

11 maggio 2022

Lucia De Dominicis

⁴⁷SC PRODUCTION: REMIX PROJECT

Research on Emerging Medical radionuclides from the X-sections

Aim of the REMIX project

Evaluation of the proton-induced nuclear reactions on ⁴⁹Ti and ⁵⁰Ti.

Abundance (%)

8.25

7.44

73.72

5.41

5.18

Element

46**T**i

47**Ti**

48**Ti**

49**Ti**

50**Ti**

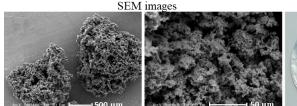
Optimization of the production parameters to minimize the co-production of contaminants: ^{44m}Sc (58.61 h, β⁺); ^{44g}Sc (3.97 h, β⁺); ⁴⁶Sc (83.79 d, β⁻); ⁴⁸Sc (43.67 h, β⁻).

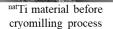
⁴⁹Ti and ⁵⁰Ti targets composition

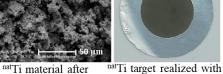
Enriched ⁴⁹Ti and ⁵⁰Ti metallic powder purchased (300 mg of ⁴⁹Ti and 150 mg of ⁵⁰Ti, about 27k€)

In metallic sponge form!

(up to 2 mm size)






TARGET MANUFACTURING: E PLATE PROJECT

cryomilled powder cryomilling process

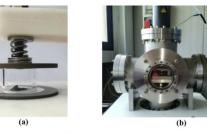
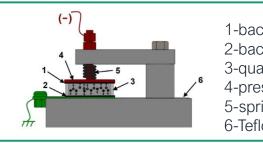



Fig. 3. Photograph of the HIVIPP setup assembly (a) placed inside the vacuum chamber (b)

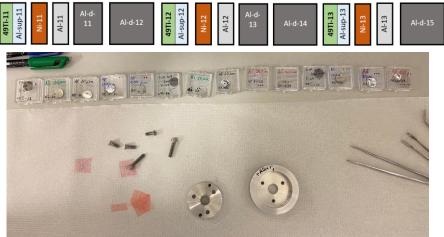
Cryomilling process.

Targets realization with the HIVIPP technique.

Setup scheme 1-backing (Upper electrode, cathode) 2-backing (Lower electrode, anode) 3-quartz cylinder 4-pressing plate 5-spring 6-Teflon holder

HIVIPP deposition and characterization of isotopically enriched ⁴⁸Ti targets for nuclear cross-section measurements" H. Skliarova, et al., Nucl. Instrum. Methods Phys. Res A 981, 164371 (2020).

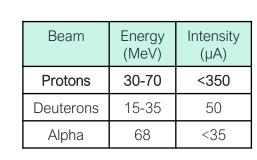
2 depositions each time with high efficiency (95-98%)!


Homogeneity and Ti deposited amount analysis with the IBA (Ion Beam Analysis) method @ LNL.

• Analyses on ⁴⁹Ti are ongoing!

Lucia De Dominicis

TARGET IRRADIATIONS @ ARRONAX


Targets are assembled following the stacked-foils technique.

Material foil	Function		
××Ti	⁴⁷ Sc production		
^{nat} AI (25µm)	Support for deposition		
^{nat} Ni (10/25 µm)	Beam current monitor foil		
^{nat} AI (10 µm)	Collect recoil from Ni foils		
^{nat} AI (250/500 μm)	Degrade beam energy to bombard more Ti targets in one irradiation run at different energies		

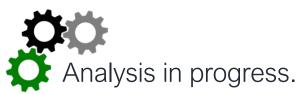
Lucia De Dominicis

Target assembly.

IBA cyclotron @ ARRONAX and alignment procedure.

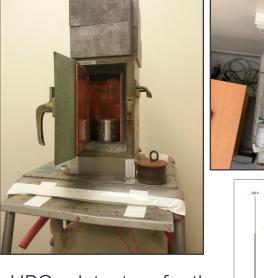
TARGET IRRADIATIONS @ ARRONAX

PASTA natV targets irradiated					
Run # Date Target foils # Proton energy (MeV) Irradiation time (Irradiation time (min)	Current (nA)
1	11/04/2017	3	70.3	90	100
2	27/06/2017	3	54	90	100
3	04/07/2017	3	61	90	100
4	10/10/2017	3	34	90	120
5	22/11/2017	1	40	50	130
6	17/04/2018	1	34	90	100



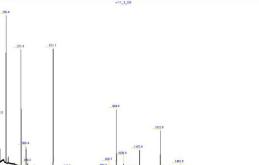
tot ^{nat}V foils = 14.

REMIX ⁴⁹ Ti targets irradiated					
Run #	# Date Target foils # Proton energy (MeV) Irradiation time (min) Current				Current (nA)
1	26/10/2021	3	70	60	110
2	26/10/2021	3	40	90	112
3	01/03/2022	3	50	90	100
4		3	58	75	120



tot 49 Ti foils = 12.

γ-SPECTROSCOPY @ ARRONAX



HPGe detectors for the acquisition of γ-spectra.

- First fast acquisition of each target soon after the EOB (End Of Bombardment) \rightarrow to measure also the short-lived radioisotopes.
- Several other acquisitions in the following 5 days (up to 5 or 6 spectra for each foil) \rightarrow to follow the decay of the produced radioisotopes and check interferences in γ -lines.
- One more long acquisition of each target about 30 days after EOB \rightarrow to measure the long-lived radionuclides.

Data analysis is performed in parallel by me and Liliana Mou.

DATA ANALYSIS @ LNL

From γ -spectra \rightarrow data analysis

Cross section calculations as*:

$$\sigma_x = \sigma_r \frac{C_x n_r \epsilon_r I_r f_r}{C_r n_x \epsilon_x I_x f_x}$$

C = number of counts in the γ -line $n = \frac{\rho P x N_A}{A}$ number of atoms per area in the target $\epsilon =$ efficiency of the detector at the energy of the γ -line I = intensity of the γ -line $f = (1 - e^{-\lambda t_i})e^{-\lambda t_c}(1 - e^{-\lambda t_m})/\lambda$ time correction factor r = quantities referred to monitor radionuclide x = quantities of the radionuclide of interest

*"Uncertainty propagation in activtion cross section measurements"

N. Otuka, et al., Radiat. Phys. Chem. 140, 502-510 (2017).

All the produced radionuclides are considered: 43 Sc, 44m Sc, 44g Sc, 46 Sc, 47 Sc, 48 Sc, 48 V, 48 Cr, 49 Cr, 51 Cr, 42 K, 43 K

They are able to contribute to the dose delivered to a patient.

⁴⁶Sc is the main contaminant since:

- It cannot be chemically separated (Sc-isotope).
- Its half-life is longer than the ⁴⁷Sc one.

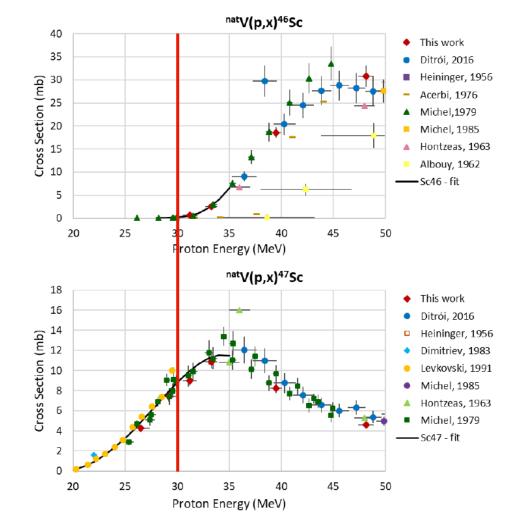
	Radioisotope	Half-life (d)	γ-emission		β-emission	
			Energy (keV)	Intensity (%)	Mean Energy (keV)	Intensity (%)
•	⁴⁷ Sc	3.3492	159.381	68.3	142.6 203.9	68.4 31.6
	⁴⁶ Sc	83.79	889.277 1120.545	99.9840 99.9870	111.8 580.8	99.9964 0.0036

Lucia De Dominicis

(

PASTA RESULTS: NATV TARGETS

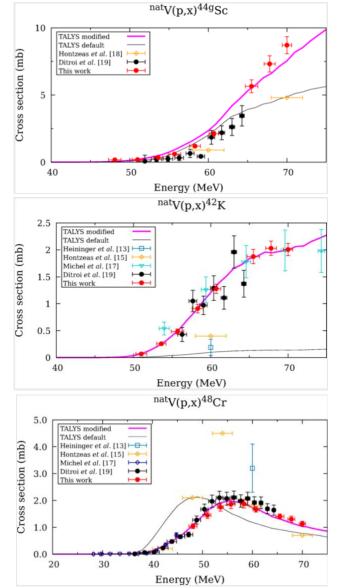
An energy interval where the production of ⁴⁶Sc is almost negligible has been individuated.

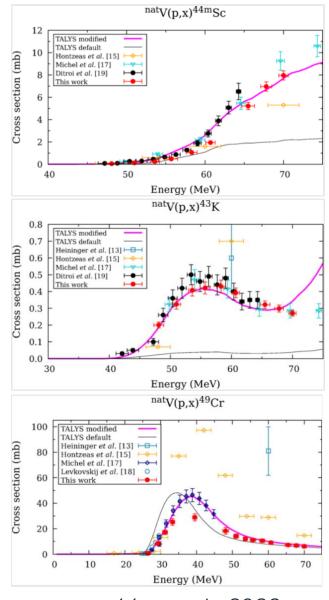


"New results on proton-induced reactions on vanadium for ⁴⁷Sc production and the impact of level densities on theoretical cross sections" F. Barbaro, et al., Phys Rev C 104, 044619 (2021).

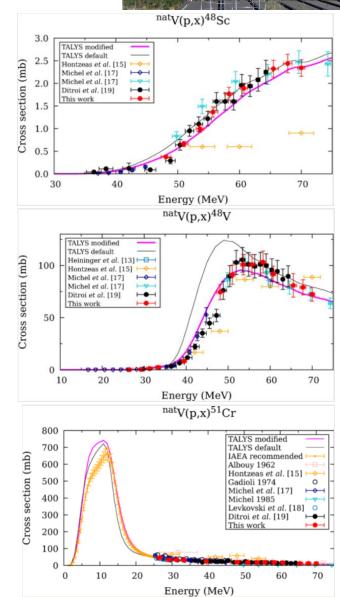
Dosimetric studies have extended this energy interval up

to 35 MeV.


"Preliminary dosimetric analysis of DOTA-folate radiopharmaceutical radiolabelled with ⁴⁷Sc produced through ^{nat}V(p,x)⁴⁷Sc cyclotron irradiation" De Nardo L *et al.*, Phys. Med. Biol. 66, 025003, (2021).

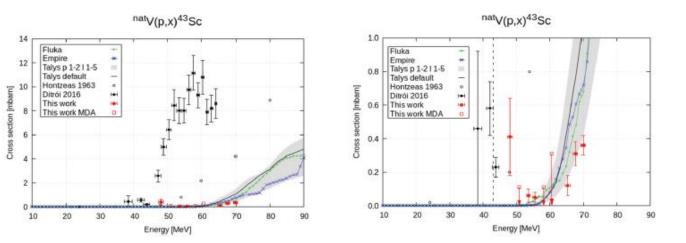

PASTA RESULTS: NATV TARGETS

F. Barbaro, et al., Phys Rev C 104, 044619 (2021).


9-11 maggio 2022 Quinto Incontro Nazionale di Fisica Nucleare INFN 2022

Lucia De Dominicis

11 maggio 2022



13

PASTA RESULTS: NATV TARGETS

"New results on the ^{nat}V(p,x)⁴³Sc cross section: Analysis of the discrepancy with previous data"

> G. Pupillo et al., Nuclear Inst. and Methods in Physics Research B 464, 32–35, (2020).

Theoretical simulations with TALYS, FLUKA, and EMPIRE codes supported our new results.

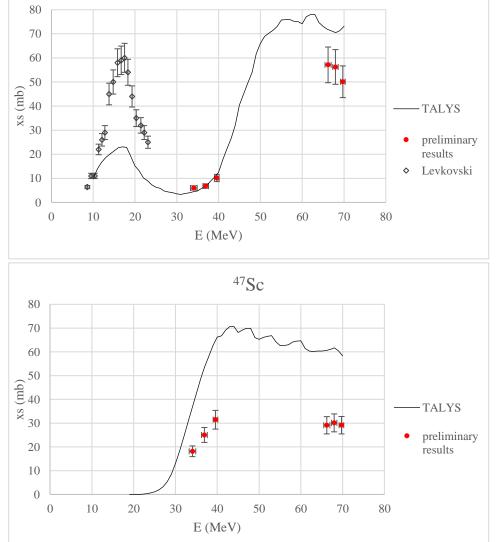
The discrepancy is due to the lack of correction in the counts of 373 keV γ -peak from the 617 keV ⁴³K peak activity in the previous data.

Padiaisatana	Half-life	γ-emission		
Radioisotope	(h)	Energy (keV)	Intensity (%)	
⁴³ Sc	3.891	372.9	22.5	
⁴³ K	22.3	372.760 617.490	86.80 79.2	

Interference in the 373 keV γ-line!

REMIX PRELIMINARY RESULTS: ⁴⁹**Ti TARGETS**

PRELIMINARY: Targets thicknesses analysis is ongoing.

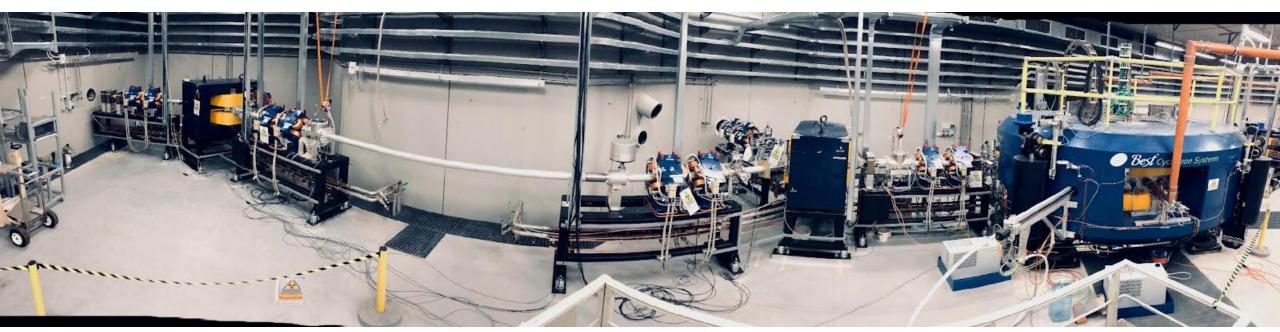

Interesting nuclear reactions because few data $[^{49}\text{Ti}(p,x)^{46}\text{Sc}]$ or <u>**no data**</u> $[^{49}\text{Ti}(p,x)^{47}\text{Sc}]$ are available in literature.

(Comparison only with TALYS default simulations).

No energy interval with negligible ⁴⁶Sc production can be found till now.

Future dosimetric studies will tell if an energy interval around 40 MeV can be exploited for ⁴⁷Sc production.

- Production through the ^{nat}V(p,x)⁴⁷Sc nuclear reaction below 35 MeV is promising but the production is low so also other production routes are investigated:
- Calculations of the production using ⁴⁸Ti targets are going to be concluded.
- Data of the last two ⁴⁹Ti targets bombardments are under analysis \rightarrow the proton energy range between 40 and 60 MeV was investigated to complete the production cross section curves.
- Irradiation runs involving ⁵⁰Ti targets will be performed this summer \rightarrow targets have already been manufactured and will be subjected to the IBA.



Quinto Incontro Nazionale di Fisica Nucleare INFN 2022

THANK YOU FOR YOUR ATTENTION

Q lucia.de.dominicis@lnl.infn.it Lucia De Dominicis