Numerical and experimental investigations on compact binary ejecta plasma opacity relevant for kilonova transient signals

Motivation and introduction

- Merger of binary neutron stars: ejection of n-rich matter, rapid neutron capture (r-process) nucleosynthesis
- Radioactive decay of synthesized r-process nuclei power electromagnetic transient: kilonovae (KN)
- Gravitational wave events (e.g., GW170817) from such merging detected along with KN counterpart AT2017gfo
- Detection of AT2017gfo spectrum: first direct evidence that these sites are among the major producer of nuclei heavier than iron via *r*-process
- Plasma opacity greatly impacts on energy transport and spectroscopic observations in many astrophysical environments
- Role played by the **opacity on KN emission**, as it delivers information on the post-merging plasma **ejecta composition** (*r*-process multi-components)
- Large theoretical uncertainty factor from an almost total ignorance on ejecta opacity at the typical conditions of a KN event

Trapped magneto-plasmas conceived in **PANDORA** may open the route to **experimental in-laboratory measurements of opacities** at n_e and T_e resembling ejecta plasma conditions: **shed light on r**-**process** generated metallic species at **specific time-stages of KN diffusion**

http://compact-merger.astro.su.se/Movies1/ns14_ns15_6mio_3D_density_v5.mov http://compact-merger.astro.su.se/Movies1/ns14ns15-6Mio-irrot-3Dcut-Ye-v2.mov http://compact-merger.astro.su.se/Movies1/rProcessMoviexdiv4-12000.mov

State-of-the-art on *r*-process and KN

- Binary Neutron Stars (BNS) mergers are among major production sites of *r-process* elements
- Ejecta from BNS systems: first evidence of *r*-process nucleosynthesis in kilonova (KN) AT2017gfo, from Gravitational-Wave event GW170817
- KN light-curve, 2 fundamental inputs: (1) *r*-process nucleosynthesis yields (fixing the heating rate) (2) opacity (fixing the exchange of energy between plasma and radiation)

$$\frac{dE}{dt} = -p\frac{dV}{dt} + \dot{\epsilon} - L(t) \qquad (2)$$

Opacity from **theoretical models**: **large uncertainty** factor, blending of many millions atomic transition lines, experimental data are largely desired!

....

KN spectral analysis

- f-shell elements : strong blending of lines
- Relativistic velocity : broad lines (multi-components and different velocities of ejecta)
- Atomic data: incomplete and uncertain
- → The analysis of the spectrum at 1.5 days suggested the presence of strontium (<u>Watson +19</u>)

A. Pidatella - Quinto Incontro Nazionale INFN - 9 Maggio 2022

Watson, D., et al. Nature 574497-500, (2019)

State-of-the-art on r-process and KN

r-process nucleosynthesis in BNS mergers

• Electron fraction, $Y_e \sim \frac{n_p}{n_p + n_n} \rightarrow$ **dominant parameter** (composition) \rightarrow **opacity**

- Production of lanthanides dramatically changes photon opacity κ_{ν}
- No lanthanides (Y_e > 0.2): low opacity, KN peak shaped mostly by light-r process elements, blue-KN emission
- Presence of lanthanides (Y_e ≤ 0.2): larger opacity, KN peak shaped mostly by heavy-r process elements, red-KN emission

D. Kasen *et al.*, Nature 551, 80–84 (2017)

PANDORA: in-laboratory experimental measurements of NS² merger ejecta opacity

- Trapped magneto-plasmas conceived in PANDORA: experimental in-laboratory measurements of opacities at electron densities and temperatures resembling some ejecta plasma conditions
 - PANDORA concept: compact plasma trap to magnetically confine ions of radioisotopes in a microwave-sustained plasma
 - Main Goal: nuclear decay measurements in a plasma resembling astrophysical conditions (temperature, ion charge state distribution)
 - Multi-diagnostic setup: monitoring diagnostics + detectors array

- s-process nucleosynthesis + β decay branching
- r-process cosmic sites
- Nuclear reaction rates in stars
- Compact binary object
- spectroscopy (kilonova transient):
- to characterize composition and

PANDORA: in-laboratory experimental measurements of NS² merger ejecta opacity

- The KN emission is reprocessed by atomic opacities (mainly **bound-bound transitions**) to optical and infrared wavelengths. The emission in these wavelengths can probe the composition of the ejecta
- Feasibility study: astrophysical modelling BNS ejecta, nuclear network for nucleosynthesis yields, and population kinetics code for synthetic spectra

PANDORA: in-laboratory experimental measurements of NS² merger ejecta opacity

- The KN emission is reprocessed by atomic opacities (mainly **bound-bound transitions**) to optical and infrared wavelengths. The emission in these wavelengths can probe the composition of the ejecta
- Feasibility study: astrophysical modelling BNS ejecta, nuclear network for nucleosynthesis yields, and population kinetics code for synthetic spectra

Pidatella, A., et al. Nuovo Cimento 44 C (2021) 65 Chung H.-K. et al., High Energy Density Phys., 1 (2005) 3

Opacity weighted on abundances from SKYNET

-1.2 -4.4 -7.6 -10.8 $\sigma_{\widetilde{U}}$ -14 -17.2 log -20.4 -23.6 -26.8 0.4

IDENTIFICATION OF PHYSICS CASES

- Time-dependent r-process elements abundances from SKYNET, with distribution of ejecta properties (entropy, electron fraction and expansion timescale) from astrophysical simulations \rightarrow **LIGHT R-PROCESS ELEMENTS, LOW NEUTRON RICHNESS**
- **MEAN OPACITY vs. T**, weighted with abundances from SKYNET: synthetic spectra of opacity from FLYCHK → Selenium, Strontium, Zirconium most suitable for experiments

PANDORA: in-laboratory experimental measurements of NS² merger ejecta opacity

- PANDORA is a multi-diagnostic facility: optical emission spectroscopy (OES) to probe plasma emission in the blue-KN stage, supported by ancillary non-invasive diagnostics
- Monitoring/measuring plasma parameters, plasma stability
- Experimental setup and measurement design

CHALLENGING

- Transmission measurements: plasma active medium
- Self-emission from plasma + radiation attenuation led by opacity
- **Spurious contribution**: (i) **reflection** at chamber wall, (ii) effect of **cavity** on wave propagation

Backlighter

Spectrum

Collimator/

Magnetic Coils

Plasma

Optical fiber

Collimator/

Spectrometer

PANDORA: in-laboratory experimental measurements of NS² merger ejecta opacity

- PANDORA is a multi-diagnostic facility: optical emission spectroscopy (OES) to probe plasma emission in the blue-KN stage, supported by ancillary non-invasive diagnostics
- Monitoring/measuring plasma parameters, plasma stability
- Experimental setup and measurement design: w.i.p. on the Flexible Plasma Trap, first campaign of OES measurements

Flexible Plasma Trap @ LNS (setup Feb 2022)

• PLASMA TRAP CONFIGURATION (FPT vs. PANDORA):

- Simple mirror field, magnetic bottle (min-B field)
- RF power : 50÷450 W (up to 6 kW)
- Heating RF frequency: 3÷4 GHz (18÷21 GHz)

Pidatella, A.,*et al.* Frontiers in Astronomy and Space Sciences Nuclear Physics (submitted)

• Experimental H₂/Ar plasma characterization performed on FPT: commissioning with radial injection and high-power

The comparison between the theoretical and experimental line ratios allows to evaluate the plasma parameters (electron density and temperature)

$$H_{\beta}/H_{v}, H_{\alpha}/H_{\beta}$$
 n_{e}, T_{e}

$$\frac{I_{\alpha}}{I_{\beta}} = \frac{\eta_{\alpha}}{\eta_{\beta}} \frac{\chi_{\alpha}(\rho, T)}{\chi_{\beta}(\rho, T)} \to \langle \rho \rangle, \langle T \rangle$$

1. Monitoring plasma stability from emission line ratios

Nuclear Physics (submitted)

1. Characterizing plasma density and temperature from line ratios

Pidatella, A.,*et al.* Frontiers in Astronomy and Space Sciences Nuclear Physics (submitted)

 Solving non-linear two-variables equation system from two-lines integrated ratios → cross point! Unique solution for ⟨ρ⟩, ⟨T⟩

• ESTIMATES : Average density and temperature

effective

emission

the

to

proportional

1. Characterizing plasma density and temperature from line ratios

Pidatella, A.,*et al.* Frontiers in Astronomy and Space Sciences Nuclear Physics (submitted)

• ESTIMATES : Average density and temperature proportional to the effective emission coefficients χ_{λ} .

$$\frac{I_{\alpha}}{I_{\beta}} = \frac{\eta_{\alpha}}{\eta_{\beta}} \frac{\chi_{\alpha}(\rho, T)}{\chi_{\beta}(\rho, T)} \to \langle \rho \rangle, \langle T \rangle$$

Thanks to the collaboration of colleagues from *MPI* für Plasmaphysik and UNI-Augsburg

Theory: YACORA **CR model** line ratios (n,T) isosurface

Collisional Radiative (CR) model

Balance eqs. are solved considering the different mechanisms of population and depopulation of **atomic levels** (Rate eqs.)

Exp: measured line ratios, isoline on theoretical isosurface

• Solving non-linear two-variables equation system from two-lines integrated ratios \rightarrow cross point! Unique solution for $\langle \rho \rangle, \langle T \rangle$

Summary and perspectives on KN opacity measurements

- Triggered by the astrophysical problem, a feasibility study to measure for the first-time plasma opacity in ECR plasma has been performed. PANDORA offers the conditions for reproducing blue-KN peculiar environment
- PANDORA is a multi-diagnostic facility: optical emission spectroscopy (OES) to probe plasma emission in the blue-KN stage, supported by ancillary non-invasive diagnostics
- Monitoring/measuring plasma parameters, plasma stability
- Test-bench measurements and experimental setups have been attempted on the Flexible Plasma Trap @ LNS
- **Plasma characterization** towards densities and temperatures suitable
- **Experimental difficulties**: active medium, resonant cavity, structured <u>E</u> density and temperature profiles
- First data: using line-ratio method, H-plasma + Ar-H mixtures,
 estimate plasma parameters
 - **Experimental setup and measurement design**: w.i.p. on the Flexible Plasma Trap, first campaign of OES measurements, closely reproducing KN conditions **few eV, and 10**¹¹ cm⁻³
 - **Perspectives**: absolute calibration, light-*r process* elements plasmas (Se, Sr, Zr) opacity measurements via OES.

Backup I

	R	f	D-							
	D	IRF	$\mathbf{P0}$							
$P_{\rm RF}$	(a)	3.76	9E-04	100	150	200	250			
ρ_e	H_2			$2.40^{-2.17}_{+2.75}E17$	$1.92^{+2.00}_{-1.87}E17$	$2.13^{+2.13}_{-2.13}E17$	$2.19^{+2.24}_{-2.17}E17$			
$k_B T_e$				$17.38^{-13.76}_{+22.94}$	$24.40^{+24.60}_{+24.45}$	$26.22^{-25.61}_{+26.84}$	$25.12^{+25.26}_{+25.36}$			
$P_{\rm RF}$	(a)	3.76	1E - 02	100	150	200	250	300	350	400
ρ_e	H_2			$1.40^{-1.35}_{-1.40}E17$	$1.69^{+1.69}_{-1.69}E17$	$1.71^{+1.74}_{-1.69}E17$	$1.99^{+2.00}_{-1.98}E17$	$2.53^{+2.57}_{-2.51}E17$	$2.64^{+2.65}_{-2.64}E17$	$2.50^{+2.51}_{-2.47}E17$
$k_B T_e$				$3.48^{-3.08}_{+3.85}$	$4.56_{+4.85}^{-4.31}$	$4.83^{-4.75}_{+4.90}$	$5.80^{-5.65}_{+5.96}$	$9.23^{-9.15}_{+9.40}$	$9.22^{-8.98}_{+9.47}$	$8.60^{-8.32}_{+8.84}$
$P_{\rm RF}$	(a)	3.76	1E - 02	100	150	200	250	300	350	
ρ_e	$H_{2}^{(99)}$			$1.30^{+1.47}_{-1.17}E17$	$1.40^{+1.47}_{-1.38}E17$	$1.47^{+1.47}_{-1.47}E17$	$1.86^{+1.86}_{-1.84}E17$	$4.36^{-4.29}_{\pm 4.41}E17$	$3.69^{-3.60}_{\pm 3.77}E17$	Table
$k_B T_e$	$+\mathbf{Ar}^{(1)}$			$2.77^{-2.76}_{+2.78}$	$3.37^{-3.35}_{+3.40}$	$3.27^{-3.09}_{+3.46}$	$6.50^{-6.49}_{+6.66}$	$27.70^{-26.88}_{+28.76}$	$20.74_{+21.79}^{-19.72}$	are ex
$P_{\rm RF}$	(b)	6.774	1E - 03	40	60	80	100	120		
ρ_e	H_2			$2.64^{+2.74}_{-2.61}E17$	$2.88^{+2.96}_{-2.77}E17$	$2.20^{-1.86}_{+2.76}E17$	$1.34^{+1.49}_{-1.20}E17$	$1.26^{+1.28}_{-1.24}E17$		
$k_B T_e$				$17.37^{+17.63}_{+17.53}$	$19.00\substack{+19.02 \\ -18.83}$	$11.88^{-8.94}_{+17.25}$	$7.69^{+7.81}_{-7.58}$	$7.85^{-7.83}_{+7.89}$		
$P_{\rm RF}$	(c)	6.786	1E - 03	40	60	80	100			
ρ_e	H_2			$0.93^{+0.97}_{-0.88}E17$	$1.03^{+1.06}_{-0.97}E17$	$1.58^{+1.63}_{-1.01}E17$	$1.94^{+2.04}_{-1.56}E17$			
$k_B T_e$				$4.88^{-4.84}_{+4.92}$	$7.66^{-7.58}_{+7.71}$	$12.37^{-12.33}_{+12.54}$	$29.86\substack{+29.99\\-29.75}$			
$P_{\rm RF}$	(c)	6.786	1E - 02	40	60	80	100	120	140	
ρ_e	H_2			$1.40^{+1.50}_{+1.86}E17$	$1.40^{+1.47}_{-1.28}E17$	$2.40^{+2.45}_{-2.34}E17$	$2.54^{+2.57}_{-2.51}E17$	$2.57^{+2.63}_{-2.51}E17$	$2.13^{+2.23}_{+2.10}E17$	
$k_B \mathrm{T}_e$				$3.09^{-3.09}_{-3.08}$	$3.09^{-3.01}_{+3.14}$	$5.40^{-5.35}_{+5.43}$	$5.56^{-5.41}_{+5.74}$	$3.93^{-3.84}_{+4.05}$	$3.77^{-3.30}_{+4.42}$	
$P_{\rm RF}$	(c)	6.786	1E - 02	40	60	80	100	120	140	
ρ_e	$H_{2}^{(99)}$			$1.77^{+1.94}_{-1.61}E17$	$1.77^{+1.86}_{-1.77}E17$	$1.47^{+1.54}_{-1.34}E17$	$1.47^{+1.47}_{-1.47}E17$	$1.40^{+1.47}_{-1.28}E17$	$1.47^{+1.54}_{-1.47}E17$	
$k_B T_e$	$+\mathbf{Ar^{(1)}}$			$2.65^{-2.65}_{+2.66}$	$2.88^{-2.78}_{+3.01}$	$2.69^{-2.67}_{+2.70}$	$2.82^{-2.64}_{+2.99}$	$2.51^{-2.40}_{+2.60}$	$2.53^{-2.51}_{+2.56}$	

Pidatella, A.,*et al*. Frontiers in Astronomy and Space Sciences Nuclear Physics (submitted)

Table 2. OES experimental run details. Pure hydrogen (H₂) and Hydrogen-Argon mixture (H₂^{99%} + Ar^{1%}) cases are explicitly indicated. Configurations are labeled by n. (#) and B-field (a-c) - see also Fig. (2(a).

	$ B_{\text{max}}/B_{\text{min}}$	$f_{\rm RF}$ [GHz]	p ₀ [mbar]	$\mathbf{P}_{\mathrm{RF}}\left[\mathbf{W}\right]$	$t_{acq}\left[s\right]$	N. of spectra
# 1 , (a), H ₂	2.7930	3.76	9E - 04	$100 \div 250$	1	10
# 2 , (a), H ₂	2.7930	3.76	1E - 02	$100 \div 400$	1	10
# 3 , (a), $H_2^{99\%} + Ar^{1\%}$	2.7930	3.76	1E-02	$100\div350$	1	10
# 4 , (b), H ₂	2.2945	6.774	1E - 03	$40 \div 120$	1	10
# 5 , (c), H ₂	3.8289	6.786	1E - 03	$40 \div 100$	2	5
# 6 , (c), H ₂	3.8289	6.786	1E - 02	$40 \div 140$	2	5
# 7, (c), $H_2^{99\%} + Ar^{1\%}$	3.8289	6.786	1E - 02	$40 \div 140$	2	5

A. Pidatella – Quinto Incontro Nazionale INFN – 9 Maggio 2022

Wavelength [nm]

Backup 3

