Muons production and Neutrino Trapping in Binary Neutron Star mergers

In collaboration with A. Perego, D. Logoteta, and M. Branchesi

GRAN SASSO G **SCIENCE INSTITUTE** SCHOOL OF ADVANCED STUDIES Scuola Universitaria Superiore

Quinto incontro Nazionale di Fisica Nucleare - INFN 2022

Eleonora Loffredo

1/15

Binary Neutron Star mergers The first detection

- August 2017: first detection of gravitational \bullet waves & electromagnetic counterparts from a BNS merger
- New insights on fundamental physics, in particular on Gamma Ray Bursts and Kilonovae

Credits: LVC+astronomers, Abbott et al. 2017, ApJL, 848

2/15

Which is the fate of a Binary Neutron Star merger?

The fate depends on the masses and the Equation of State

Credits: Radice, Bernuzzi, Perego 2020

The Equation of State of nuclear matter

- EOS: relation between matter density, temperature and thermodynamic variables
- The EOS of Neutron Stars is unknown
- Modelling of nuclear interaction and relevant degrees of freedom: neutrons, protons, pions, free quarks, muons, ...
- The relevant degrees of freedom depend on the temperature other than the density

The relevance of muons and trapped neutrinos

- Muons are included in cold Neutron Star EOS
- Thermodynamics conditions in BNS mergers fatter trapping
- Trapped neutrinos can make the EOS softer

• Thermodynamics conditions in BNS mergers favour muons and neutrinos production and neutrino

The relevance of muons and trapped neutrinos

State of the art simulations of BNS mergers **don't** include muons and trapped neutrinos. The aim of this work is to estimate their impact on the merger remnant.

Improving the microphysics modelling Method

- Degrees of freedom: baryons, electrons, positrons, muons, anti-muons, photons and neutrinos
- Thermodynamic variables determined by baryon number density n_b , temperature T and particle fractions $Y_i = n_i/n_b$ where $i = p, e^-, e^+, \mu^- \dots$
- Charge neutrality $Y_p = Y_e + Y_\mu$ where
- Assume thermal and weak equilibrium
- Under these assumptions the relevant variables are n_b , T, Y_e and Y_μ

e
$$Y_e = Y_{e^-} - Y_{e^+}$$
 and $Y_{\mu} = Y_{\mu^-} - Y_{\mu^+}$

Improving the microphysics modelling Method - The post-processing technique

- At high enough density the neutrinos are trapped $\rightarrow Y_{l,e}, Y_{l,\mu}$ conserved
- On a time-scale $t_{\text{weak}} \ll dt \ll t_{\text{dyn}}$ the internal energy *u* stays the same

$$\begin{cases} Y_{l,e} = Y_e + Y_{\nu_e}(n_b, T, Y_e, Y_\mu) - Y_{\bar{\nu}_e}(n_b, T, Y_e, Y_\mu) \\ Y_{l,\mu} = Y_\mu + Y_{\nu_\mu}(n_b, T, Y_e, Y_\mu) - Y_{\bar{\nu}_\mu}(n_b, T, Y_e, Y_\mu) \\ u = \sum_i e_i(n_b, T, Y_e, Y_\mu) \quad i = b, e^{+/-}, \mu^{+/-}, \gamma, \nu, \bar{\nu} \end{cases}$$

- and $Y_{l,\mu} = Y_{\mu} = 0$ and no contributions from neutrino trapping

During the merger the temperature of fluid elements increase \rightarrow creation of muons and neutrinos

• Numerical relativity simulations provide $(Y_{l,e}, Y_{l,\mu}, u) \forall (t, x, y, z)$ under the assumptions $Y_{l,e} = Y_e$

• By solving the system we get the *true* values of Y_e, Y_μ, T and all thermodynamic quantities

Typical outcome of a BNS merger simulation Matter Density

Credits: Simulation from Nedora et al., ApJ 2021

The appearance of muons

Results for 3 simulations with same binary mass ratio $M_1/M_2 = 1$ but different EOS (BLh, DD2, SFHo)

The trapping of Muon Neutrinos

 $\mu_n - \mu_p \sim 200 \text{ MeV}$ $\mu_n - \mu_p \sim 325 \text{ MeV}$

Trapped Anti-neutrinos as probe of the nuclear chemical potentials

The trapping of Electron Neutrinos

Frapped neutrinos in the out Possibility of Neutrino

- Trapped neutrinos in the outer layers irrespective of the EoS.
 - Possibility of Neutrino bursts during the evolution.

11/15

The variation of Pressure

- Plot of ratio between pressure P1.02computed in post-processing and simulation pressure P_{sim}
- 1.00
- 0.98
- $P/P_{sim} < 1 \rightarrow driven by$ $n \rightarrow p + e^- + \bar{\nu}_e$ and $n \rightarrow p + \mu^- + \bar{\nu}_\mu$, favoured at high temperature
- 0.96
 - $P/P_{sim} > 1 \rightarrow driven by muons already$ present in the cold Neutron Stars, favoured at low temperature

The variation of Pressure Comparing different EoSs

 $0.93 \leq dP \leq 1.03$ $0.94 \leq$ Possible impact on the rem

 $0.94 \lesssim dP \lesssim 1.05 \qquad \qquad 0.93 \lesssim dP \lesssim 1.04$

Possible impact on the remnant stability and collapse time.

1.02 1.00 0.98 0.96 0.94

Asymmetry in pressure variation for $M_1/M_2 > 1$. Possibility of kicks...

The variation of Pressure: different mass ratio Comparing different binary mass ratios

Conclusions

- The fraction of muons is between $\sim 30\% \div 70\%$ of the electron fraction. The inclusion of muons will improve state of the art simulations.
- $\bar{\nu}_e$ and $\bar{\nu}_\mu$ form trapped degenerate gases in the core with a degeneracy depending on the nuclear chemical potentials \rightarrow probe of $\mu_n - \mu_p$
- ν_e and ν_μ form trapped degenerate gases in the outer layers \rightarrow possibility of bursts
- The pressure variation is positive or negative depending on the spatial region considered \rightarrow implications for collapse time
- Asymmetry in pressure variation \rightarrow possibility of kicks

Conclusions

- inclusion of muons will improve state of the art simulations.
- on the nuclear chemical potentials \rightarrow probe of $\mu_n \mu_p$.
- The pressure variation is positive or negative depending on the spatial region
- Asymmetry in pressure variation \rightarrow possibility of kicks.

• The fraction of muons is between $\sim 30\% \div 70\%$ of the electron fraction. The

• $\bar{\nu}_e$ and $\bar{\nu}_u$ form trapped degenerate gases in the core with a degeneracy depending

• ν_e and ν_μ form trapped degenerate gases in the outer layers \rightarrow possibility of bursts.

considered \rightarrow implications for collapse time and features of EM counterparts.

THANK YOU FOR YOUR KIND ATTENTION