The FOOT (Fragmentation of Target) experiment: an overview and first results

Matteo Morrocchi, INFN Pisa and UniPi on behalf of the FOOT collaboration

Quinto Incontro Nazionale di Fisica Nucleare Laboratori Nazionali del Gran Sasso

9-11/05/2022

Goal

FOOT is an applied nuclear physics experiment that aims at measuring the double differential fragmentation cross-section for ions and energies of interest for hadron therapy and radioprotection in space

Study of	nuclear	physics
interactions	in	the
elements	that	mainly
constitute	the	human
body for a	precise	
dosimetric	evaluation in	
two different contexts		

- Italy: 10 INFN sections/labs, CNAO
- Germany: GSI, Aachen University
- France: IPHC Strasbourg
- Japan: Nagoya University
- ~90 researchers
$\square \square \square \square$

Motivation: hadron therapy

The Bragg peak allows the confinement of the dose deposition in a narrow and tunable region (especially favourable for deep-seated tumour), but dose delivery needs a very accurate prediction

Motivation: proton therapy

Pfuhl et al, PMB 63(17) 2018

Fragments with lower energy compared to the primary beam have a higher LET

Laboratori Nazionali del Gran Sasso
9-11/05/2022

Motivation: carbon therapy

- Target fragmentation causes the generation of ions in the entrance channel with very low range and high RBE
- Projectile fragmentation causes the generation of ions that may travel beyond the Bragg peak, irradiating healthy tissues

Motivation: radioprotection in space

- Solar particle events: protons (GeV)
- Galactic cosmic rays: mainly high energy protons and Helium nuclei (MeV-TeV)
- Geomagnetically trapped particles: protons (hundreds of MeV) and e (hundreds of keV)

Durante e Cucinotta,
Nature Rev. Cancer 2008

Laboratori Nazionali del Gran Sasso

Galactic cosmic rays

- 87% protons
- 12% helium
- 1% heavier ions
~1 mSv/day
As a reference:
- 1 chest X-ray -0.1 mSv
- 1 brain CT-1.6 mSv

Need for optimal shielding and accurate modeling of their interactions with particles.

Required measurements

Inverse kinematic

In the case of a proton projectile, the target fragmentation can be studied using an inverse kinematic approach, so to have fragments with high kinetic energy.

DIRECT KINEMATIC

$\begin{aligned} & \text { Thin targets (few mm) } \\ & \text { of } \mathrm{C} \text { and } \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{PMMA}\end{aligned} \frac{d \sigma}{d E_{\text {kin }}}(H)=\frac{1}{4}\left(\frac{d \sigma}{d E_{\text {kin }}}\left(C_{2} H_{4}\right)-2 \frac{d \sigma}{d E_{\text {kin }}}(C)\right)$

Angular distribution of the fragments depends on $Z \rightarrow$ Two different experimental setups for lower and higher Z

Electronic setup

Electronic setup

It provides the first timestamp for the time of flight measurement. It also provides the minimum bias trigger for the data acquisition

- $250 \mu \mathrm{~m}$ EJ212 plastic scintillator foil
- 8 analog read-out channels
- 6 SiPMs connected in series on each channel

Thickness is minimized to reduce the chance of beam fragmentation before the target.

Electronic setup

- Dimensions: $11.2 \mathrm{~cm} \times 11.2 \mathrm{~cm} \times 21 \mathrm{~cm}$
- 6 staggered layers of cells on X and Y view
- 3 rectangular cells $\left(16 \times 10 \mathrm{~mm}^{2}\right)$ on each layer
- Mylar windows at beam entrance and exit
- Filled with $\mathrm{Ar} / \mathrm{CO}_{2}$ at $80 / 20 \%$

Electronic setup

Magnetic Spectrometer

Three tracking stations plus two permanent magnets.

Information about the particle momentum and the interaction position of the primary particle.

VERTEX

- Four layers of MIMOSA28 chip
- 20.7 um pitch and about $20 \times 20 \mathrm{~mm}^{2}$ sensitive area
- Identification of the vertices of the trajectories

INNER TRACKER

- Two planes of MIMOSA28 chip
- Larger sensitive area compare to the VERTEX

MICROSTRIP DETECTORS

- Last stage for particle tracking
- Provide also dE/dx information
- 10° angular acceptance

Electronic setup

Composed of $20+20$ plastic scintillating bars (EJ200) Each one with size $440 \times 20 \times 3 \mathrm{~mm}^{3}$

- The two layers are orthogonally arranged to identify the interaction position
- Total active area of $40 \times 40 \mathrm{~cm}^{2}$
-80 analog channels in total

Waveforms of start counter and triggered channels of the TOFWall are stored and analyzed off-line

* L. Galli et al., WaveDAQ: An highly integrated trigger and data acquisition system, NIM-A 2018

Bias, trigger \& DAQ WaveDAQ (PSI \& INFN)

Electronic setup

- Tapered crystals
- 32 modules composed of 9 crystals each
- Dimension of $2 \times 2 \mathrm{~cm}^{2}$ (front) and $2.9 \times 2.9 \mathrm{~cm}^{2}$ (back), 24 cm length.
- Almost 1-to-1 match between calorimeter pixels and TOF-Wall intersections
- Energy resolution ranging from 1\% to 3\%

Mass reconstruction

Charge of the fragment reconstructed using the Bethe-Bloch equation:

$$
\underset{\text { OF-WALL or MICROSTRIP }}{\left\langle\frac{d E}{d x}\right\rangle_{\text {coll }}=K \frac{\rho_{t} Z_{t}}{A_{t}} \frac{Z^{2}}{\beta^{2}}\left[\frac{1}{2} \log \left(\frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} W_{\text {max }}}{I_{t}^{2}}\right)-\beta^{2}-\frac{\delta}{2}-\frac{C}{Z}\right]}
$$

Three different methods to reconstruct the mass of the fragments:

$$
A_{1}=\frac{p}{U \beta \gamma} \quad A_{2}=\frac{E_{\text {kin }}}{U(\gamma-1)} \quad A_{3}=\frac{p^{2}-E_{\text {kin }}^{2}}{2 E_{\text {kin }}}
$$

TOF+dE/dx and TRACKER
TOF $+d E / d x$ and CALORIMETER
TRACKER and CALORIMETER

Emulsion setup

- Optimized for $\mathrm{Z}<3$
- Large angle covering

- vertex detector: target layers alternated with emulsion films
- charge identification: emulsion films only
- momentum measurement and isotopic ID: lead planes alternated with emulsion films

First results with the electronic setup

TOF system tested at CNAO and GSI facilities:

- 60 MeV proton
- 115-260-400 MeV/u carbon
- $400 \mathrm{MeV} / \mathrm{u}$ oxygen

Scan of all the bars of the TOF-Wall detector

CNAO E E II

First results with the electronic setup

Energy calibration of the TOF-Wall detector, according to Birk's law

Particle	$E_{\text {beam }}[\mathrm{MeV} / \mathrm{u}]$	$\mu(Z)$	$\sigma(Z)$	$\sigma(Z) / \mu(Z)[\%]$
p	60	0.96	0.06	6.10 ± 0.02
${ }^{12} \mathrm{C}$	115	6.17	0.15	2.51 ± 0.01
${ }^{12} \mathrm{C}$	260	6.01	0.21	3.52 ± 0.01
${ }^{12} \mathrm{C}$	400	6.07	0.24	3.85 ± 0.01
${ }^{16} \mathrm{O}$	400	8.07	0.22	2.67 ± 0.02

First results with electronic setup

Conclusion

- The FOOT experiment will provide a set of double differential fragmentation cross sections for application in hadron therapy and space dosimetry
- Initial data takings were performed with a subset of detectors
- First results with oxygen beams on C and $\mathrm{C}_{2} \mathrm{H}_{4}$ targets demonstrate that the fragment charge can be reconstructed with the FOOT electronic setup
- The setup assembly is ongoing and it is expected to be completed by the end of the year
- Next data takings are expected this year (Heidelberg and CNAO)

