Quinto Incontro Nazionale di Fisica Nucleare INFN 2022

Kaonic Atoms with SIDDHARTA-2 at the DAFNE Collider

Francesco Sgaramella on behalf of the SIDDHARTA-2 Collaboration

Kaonic Atoms to Investigate Global Symmetry Breaking Symmetry 12 (2020) 4, 547

Part. and Nuclear physics QCD @ low-energy limit Chiral symmetry, Lattice **The modern era of light kaonic atom experiments** Rev.Mod.Phys. 91 (2019) 2, 025006

Fundamental physics New Physics

Kaonic atoms Kaon-nuclei interactions (scattering and nuclear interactions)

On self-gravitating strange dark matter halos around galaxies Phys.Rev.D 102 (2020) 8, 083015

Dark Matter studies

The equation of state of dense matter: Stiff, soft, or both? Astron.Nachr. 340 (2019) 1-3, 189

> Astrophysics EOS Neutron Stars

K-I) Initial capture

SIDDHARTA-2

SIlicon Drift Detector for Hadronic Atom Research by Timing Applications

FUIF Der Wissenschaftsfonds.

LNF-INFN, Frascati, Italy

SMI-ÖAW, Vienna, Austria

Politecnico di Milano, Italy

IFIN -HH, Bucharest, Romania

TUM, Munich, Germany

RIKEN, Japan

Univ. Tokyo, Japan

Victoria Univ., Canada

Univ. Zagreb, Croatia

Helmholtz Inst. Mainz, Germany

Univ. Jagiellonian Krakow, Poland

ELPH, Tohoku University

CERN, Switzerland

Francesco Sgaramella

SIDDHARTA-2 Scientific Goal

To perform the *first measurement ever of kaonic deuterium X-ray* transition to the ground state (1s-level) such as to determine its shift and width induced by the presence of the strong interaction.

SIDDHARTA-2 Scientific Goal

To perform the *first measurement ever of kaonic deuterium X-ray* transition to the ground state (1s-level) such as to determine its shift and width induced by the presence of the strong interaction.

Analysis of the combined measurements of kaonic deuterium and kaonic hydrogen

$$\varepsilon_{1s} - \frac{i}{2}\Gamma_{1s} = -2\alpha^3 \mu_c^2 a_{K^- p} (1 - 2\alpha \mu_c (\ln \alpha - 1)a_{K^- p})$$

(μ_c reduced mass of the K⁻p system, α fine-structure constant)

U.-G. Meißner, U.Raha, A.Rusetsky, Eur. phys. J. C35 (2004) 349 next-to-leading order, including isospin breaking

$$a_{K^{-}p} = \frac{1}{2} [a_0 + a_1]$$

$$a_{K^{-}n} = a_1$$

completely solve Isospin-dependent K-N scattering length

Francesco Sgaramella

Kaonic atoms – scattering amplitudes

A. Cieplý, M. Mai, Ulf-G. Meißner, J. Smejkal, https://arxiv.org/abs/1603.02531v2

Kaon Beam Source

High intensity High background

Monochromatic Low energy kaons Solid angle

Francesco Sgaramella

Experimental Principle

LNF - e⁺e⁻ Accelerator Complex

Francesco Sgaramella

Francesco Sgaramella

Francesco Sgaramella

Francesco Sgaramella

Francesco Sgaramella

Francesco Sgaramella

SIDDHARTINO

SIDDHARTINO: phase 1 of SIDDHARTA-2 1/6 of SIDDHARTA-2

Evaluation of the machine background during the DAΦNE beams commissioning phase in preparation for the K-d run through the **measurement of K-⁴He 3d->2p transition**

- Detector tuning for SIDDHARTA-2:
 - SDDs
 - Kaon Trigger
- Concluded in 2021

Kaon Trigger

Kaonic Atoms with SIDDHARTA-2 at the DAFNE Collider

10²

4750 kt1+kt2

6300

TDC a.u.

Kaon Trigger

Kaon Trigger

Silicon Drift Detectors

8 SDD units (0.64 cm²) for a total active area of 5.12 cm² Thickness of 450 μm which ensures a high collection efficiency for X-rays of energy between 5 keV and 12 keV

Silicon Drift Detectors

Kaonic ⁴He 3d \rightarrow 2*p* measurement

kt3+kt4

Kaonic Atoms with SIDDHARTA-2 at the DAFNE Collider

10³

Kaon Trigger

Kaons

Kaonic ⁴He 3d \rightarrow 2*p* measurement

Sirghi et al 2022 J. Phys. G: Nucl. Part. Phys.

SIDDHARTA-2 setup Ready for Run

SIDDHARTA-2 K-d measurement

Setup with all the SDDs (48 SDD arrays) 2022/3 and the *kaonic deuterium measurement* for a run of 800 pb⁻¹

Action plan for Kd measurement:

- First run with SIDDHARTA-2 setup as planned (about 300 pb⁻¹ integrated)
- Second run with optimized shielding, readout electronics and other necessary optimizations; (for other 500 pb⁻¹ integrated)

SIDDHARTA-2

SIDDHARTA-2 K-d measurement

Kaonic deuterium run in (all)

2022

Monte Carlo for an integrated *luminosity of 800 pb⁻¹* to perform the first measurement of the strong interaction induced energy shift and width of the kaonic deuterium ground state (similar precision as K-p)!

Significant impact in the theory of strong interaction with strangeness

Francesco Sgaramella

SIDDHARTA-2 K-d measurement

Kaonic Atoms with SIDDHARTA-2 at the DAFNE Collider

Conclusions

> Kaonic Atoms bring great insights in kaon-nucleon interaction

- Tool to directly probe low energy QCD
- *Rich of implications from nuclear to astrophysics and cosmology*
- Measurement of Kaonic-Deuterium key to fully disentangle isospin dependence on KN scattering lengths

> Phase1 SIDDHARTINO concluded

- SDDs and Kaon Trigger tuning
- Evaluation of the machine background
- Performed the most precise K-⁴He 3d \rightarrow 2p measurement in gas

SIDDHARTA-2 at DAFNE

- Installation of the full SIDDHARTA-2 setup
- Start of the kaonic deuterium run up to an integrated luminosity of 800 pb⁻¹

Beyond SIDDHARTA-2

Future programme and perspectives

Feasibility studies in parallel with Siddharta-2

Various setups in preparation:

- HPGe
- Crystal spectrometers (VOXES)
- CdZnTe detectors
- SDD 1mm for kaonic atoms measurement

> **Proposal for Extension of the Scientific Program at DAFNE:**

- Kaon mass precision measurement at a level < 7 keV
- Kaonic helium transitions to the 1s level
- Other light kaonic atoms $(K^-Bi, Li, B, K^-C, ...)$
- *Heavier kaonic atoms (K⁻Si, K⁻Pb...)*
- Radiative kaon capture $\Lambda(1405)$ study
- Investigate the possibility of the measurement of other types of hadronic exotic atoms (sigmonic hydrogen)

Beyond SIDDHARTA-2

Future programme and perspectives

Feasibility studies in parallel with Siddharta-2

- Various setups in preparation:
 - HPGe
 - Kaonic atoms beyond Crystal spectrometers (VOXES)
 - CdZnTe detectors
 - SDD 1mm for kaonic atoms me

Proposal for Extension of the Scient fic Program at DAFNE:

- Kaon mass precision measurement at a level < 7 keV
- Kaonic helium transitions to the 1s level
- Other light kaonic atoms (K^-Bi , Li, $B_{,,}$, $K^-C_{,...}$)
- *Heavier kaonic atoms (K⁻Si, K⁻Pb...)*
- Radiative kaon capture $\Lambda(1405)$ study
- Investigate the possibility of the measurement of other types of hadronic exotic atoms (sigmonic hydrogen)

Next Talk:

measurements and perspectives at the

DAFNE collider, A. Scordo

SIDDHARTA

SPARE

Kaon Charge Discriminator

μ+

Stop both K^+ and K^- in a passive layer (Teflon) and detect secondaries in a scintillator

2 mm teflon

5-10 mm thick scintillator

Immediate prompt 83% crossing probability **Delayed prompt** 53% crossing probability

π-

0 1		
Interaction	Channel	Branching ratio
K^-p	$\Sigma^-\pi^+ o (n\pi^-)\pi^+$	15.92%
K^-p	$\Sigma^+\pi^- o (p\pi^0)\pi^-$	18.56%
K^-p	$\Sigma^+\pi^- o (n\pi^+)\pi^-$	17.12%
K^-p	$\Sigma^0\pi^0 ightarrow (\Lambda\gamma)\pi^0 ightarrow ((p\pi^-)\gamma)\pi^0$	15.52%
K^-p	$\Sigma^0\pi^0 ightarrow (\Lambda\gamma)\pi^0 ightarrow ((n\pi^0)\gamma)\pi^0$	8.72% *
K^-p	$\Lambda\pi^0 o (p\pi^-)\pi^0$	2.66%
K^-p	$\Lambda\pi^0 o (n\pi^0)\pi^0$	1.54% *
$K^{-}n$	$\Sigma^-\pi^0 o (n\pi^-)\pi^0$	4.32%
$K^{-}n$	$\Sigma^0\pi^- ightarrow (\Lambda\gamma)\pi^- ightarrow ((p\pi^-)\gamma)\pi^-$	2.76%
$K^{-}n$	$\Sigma^0\pi^- ightarrow (\Lambda\gamma)\pi^- ightarrow ((n\pi^0)\gamma)\pi^-$	1.56%
$K^{-}n$	$\Lambda\pi^- ightarrow (p\pi^-)\pi^-$	7.27%
$K^{-}n$	$\Lambda\pi^- ightarrow (n\pi^0)\pi^-$	4.09%