Role of ⁶Li clustering strength in direct transfer reactions

S. S. Perrotta 1,2,3 , M. Colonna 3,1 , J. A. Lay 2,4

¹University of Catania (Catania, Italy)
 ²University of Seville (Seville, Spain)
 ³Laboratori Nazionali del Sud – INFN (Catania, Italy)
 ⁴Instituto Interuniversitario Carlos I (Seville, Spain)

Quinto Incontro Nazionale di Fisica Nucleare INFN, 05/2022

Contact: perrotta@lns.infn.it

- Context
- Electron screening

• The ${}^{6}\mathrm{Li}(\mathrm{p},{}^{3}\mathrm{He})lpha$ reaction

• One-particle (deuteron) transfer

Two-nucleon transfer

Context

Theoretical investigation on nuclear reactions between light charged particles at energies below the Coulomb barrier.

Focus on systems of astrophysical interest

sdo.gsfc.nasa.gov/
gallery

Process dominated by quantum tunnelling of the Coulomb barrier.

Astrophysical *S*-factor:

$$S(E) = E e^{2\pi\eta(E)}\sigma(E)$$
 , $\eta(E) = \alpha_e Z_1 Z_2 \sqrt{\frac{\mu c^2}{2E}}$

(σ angle-integrated cross-section, E center-of-mass collision energy, Z_i reactants charge number, α_e fine-structure constant, μ reactants reduced mass, c speed of light).

 Small variations of the effective E_{cm} are important for σ due to exp behaviour.

Contents

Introduction

- Context
- Electron screening

• The ${}^6\mathrm{Li}(\mathrm{p}, {}^3\mathrm{He})lpha$ reaction

- One-particle (deuteron) transfer
- Two-nucleon transfer

Electron screening

Atomic electrons lower the Coulomb barrier: (fig. from H. J. Assenbaum et al. *Zeitschrift für Physik A: Atomic Nuclei* 327.4 (1987))

Cross-section enhancement for $E \rightarrow 0$. See e.g. L. Bracci et al. *Nuclear Physics A* 513.2 (1990).

How to experimentally evaluate the electron screening

L. Lamia et al. The Astrophysical Journal 768.1 (2013), ${}^{6}\mathrm{Li}(\mathrm{p},{}^{3}\mathrm{He})\alpha$

Discussion of anomalies in C. Spitaleri et al. Physics Letters B 755 (2016)

- Context
- Electron screening

• The ${}^{6}\mathrm{Li}(\mathrm{p},{}^{3}\mathrm{He})lpha$ reaction

• One-particle (deuteron) transfer

Two-nucleon transfer

• No adjusting on reaction experimental data.

Study of $^6\mathrm{Li} + \mathrm{p} \rightarrow \alpha + {}^3\mathrm{He}$ transfer, focus on ${}^6\mathrm{Li}$ structure.

- Two-cluster models: $|^{6}\text{Li} \, \mathfrak{B} \rangle = |\alpha \, d \, \mathfrak{B} \rangle$
- Three-cluster models: $|^{6}\text{Li} \, \mathfrak{B} \rangle = |\alpha \, p \, n \, \bullet \mathfrak{B} \circ \rangle$
- Quadrupole deformation, strength of clustering, ...

- Context
- Electron screening

• The ${}^{6}\mathrm{Li}(\mathrm{p},{}^{3}\mathrm{He})lpha$ reaction

• One-particle (deuteron) transfer

• Two-nucleon transfer

$\left\langle lpha \, \mathrm{d} \, \middle| \, {}^{6}\mathrm{Li} ight angle$ overlap function

⁶Li g.s. $J^{\pi} = 1^+$ in inert two-cluster model = $\alpha + d$.

$$|\operatorname{Li}_{1+,\mu}\rangle = \sum_{l=0,2} \sum_{m} c_l \langle (l,m), (1,\mu-m) | 1,\mu\rangle \cdot |\alpha_{0+,0}\rangle | d_{1+,\mu-m}\rangle | \mathbf{Y}_{lm} \chi_l \rangle$$

 $\sum_{I} |c_{I}|^{2}$ (i.e. spectroscopic factor) = 0.82 reproducing experimental ANC.

Phenomenological 2s and 1d radial WFs

similar to H. Nishioka et al. Nuclear Physics A 415.2 (1984).

$\alpha + d$	Experimental	I = 0 only	I = 2: 0.8%
g.s. rms radius	$2.59{ m fm}$	$2.66{ m fm}$	$2.66{ m fm}$
g.s. quadrupole moment	$-0.806\mathrm{mb}$	$2.86{ m mb}$	$-0.806\mathrm{mb}$
g.s. dipole moment	$0.8220\mu_{ m N}$	$0.8574\mu_{N}$	$0.8530\mu_{N}$

${}^{6}\text{Li} + \text{p} \rightarrow {}^{3}\text{He} + \alpha$: deuteron transfer

Elwyn et al. 1979 Engstler et al. 1992 Lamia et al. 2013 Arai et al. 2002 (RGM) d transfer - spherical reactants Astrophysical S-factor [MeV b] d transfer - deformed reactants (α -d: 0.8% L=2) d transfer - deformed reactants (α -d: 6.6% L=2) 2 200 400 800 0 600 1000 1200 1400 1600 1800 2000 Center-of-mass collision energy [keV]

 $^{6}Li + p \rightarrow ^{3}He + \alpha$

Brown dashed line: point-like d transfer, α -d motion in L = 0Blue solid line: point-like d transfer, 6.6% of L = 2 in α -d motion

- Context
- Electron screening

• The ${}^{6}\mathrm{Li}(\mathrm{p},{}^{3}\mathrm{He})lpha$ reaction

- One-particle (deuteron) transfer
- Two-nucleon transfer

α +n+p reduced probability density function

α +n+p reduced probability density function

Currently: fictitious bound ${}^{5}\mathrm{Li} \rightarrow altered$ binding potentials

$^{6}\text{Li} + \text{p} \rightarrow {}^{3}\text{He} + \alpha$: role of ${}^{6}\text{Li} \ (2s)^{2}$ contribution

 $^{6}Li + p \rightarrow ^{3}He + \alpha$

α +p+n reduced probability density functions

$^{6}\text{Li} + \text{p} \rightarrow {}^{3}\text{He} + \alpha$: calculations rescaled to transfer data

⁶Li + p -> ³He + α , calculations rescaled on data

Direct data rescaled by adiabatic-limit (U = 182 eV) screening. Calculations rescaled by arbitrary constant factor (Blue: d-transfer. Red: p+n transfer. Violet: p+n for less-clustered ⁶Li).

Summary

What: ${}^{6}\mathrm{Li} + \mathrm{p} \rightarrow {}^{3}\mathrm{He} + \alpha$ around and below the Coulomb barrier

- How: DWBA 1- or 2-particle transfer
 - Emphasis on the role of cluster structure.
- So far: Ground-state ("static") deformation alone:
 - Only affects details at astrophysical energies.
 - Is relevant to describe resonant behaviour.
 - "Clustering strength" important at all energies (absolute value and energy trend).
- To do: Microscopic construction for three-particle WFs.
 - ${\scriptstyle \bullet}\,$ Better treatment of unbound ${\rm ^5Li}$ in sequential transfer.
 - Coupled reaction channel approaches (virtual excitations).