

Sushanta Tripathy for ALICE collaboration INFN Bologna, Italy

Charged particle production as a function of UE activity and search for jet-like modifications in small systems with ALICE

Conventional UE analyses

- Particle production in three topological regions w.r.t. leading particle
- Main UE observables: particle density, summed-*p*_T density

ALICE, <u>arXiv:2204.10157</u> [nucl-ex]

10.05.2022

A Large Ion Collider Experiment

Sushanta Tripathy - INFN meet 2022

10.05.2022

Inner Tracking System (ITS)

Sushanta Tripathy - INFN meet 2022

10.05.2022

A Large Ion Collider Experiment

Time Projection Chamber (TPC)

Tracking

V0 Trigger, multiplicity estimator

- **Conventional UE analyses**
- Particle production in three topological regions w.r.t. leading particle
- Main UE observables: particle density, summed-*p*_T density

- Steep rise in the event activity at low p_{T} for all topological regions
- \Rightarrow After $p_{T^{trig}} > 5$ GeV/c charged particle density in Transverse region is insensitive to hard component
- In Toward/Near and Away regions, charged particle density increases with **p**_Ttrig

10.05.2022

ALICE, <u>arXiv:2204.10389</u> [nucl-ex]

- **Conventional UE analyses**
- Particle production in three topological regions w.r.t. leading particle
- Main UE observables: particle density, summed- p_{T} density

- Similar UE structure in p–Pb and pp collisions
- $After p_T^{trig} > 5 GeV/c$ charged particle density in Transverse region is insensitive to hard component
- In Toward/Near and Away regions, charged particle density increases with **p**_Ttrig

10.05.2022

Sushanta Tripathy - INFN meet 2022

ALICE, <u>arXiv:2204.10389</u> [nucl-ex]

Relative transverse activity classifier, $R_{\rm T}$

Relative transverse activity classifier, $R_T = N_{ch}^T / \langle N_{ch}^T \rangle$ (Introduced in P. Skands et. al., Eur. Phys. J. C 76, 299 (2016))

ALICE, JHEP04 (2020) 192

Sushanta Tripathy - INFN meet 2022

10

 \Im Using R_{T} , one can vary the magnitude of the underlying event (UE) and study the particle production

Sushanta Tripathy - INFN meet 2022

Relative transverse activity classifier, $R_T = N_{ch}^T / \langle N_{ch}^T \rangle$ (Introduced in P. Skands et. al., Eur. Phys. J. C 76, 299 (2016))

ALICE, JHEP 04 (2020) 192

11

- \bigvee Using R_{T} , one can vary the magnitude of the underlying event (UE) and study the particle production
- $\Re R_T \rightarrow 0$: Events with less UE (dominated by jets)
- \blacksquare Higher $R_T \rightarrow$ Higher UE contribution

Relative transverse activity classifier, R_{T}

Relative transverse activity classifier, $R_T = N_{ch}^T / \langle N_{ch}^T \rangle$ (Introduced in P. Skands et. al., Eur. Phys. J. C 76, 299 (2016))

ALICE, JHEP 04 (2020) 192

- \bigvee Using R_{T} , one can vary the magnitude of the underlying event (UE) and study the particle production
- $\Re R_T \rightarrow 0$: Events with less UE (dominated by jets)
- \blacksquare Higher $R_T \rightarrow$ Higher UE contribution
- \mathbf{P} A p_{T} cut for the leading particle is required to ensure a hard process: $p_T^{trig.} > 5$ GeV/c, where the charged particle density in transverse region remains nearly constant

10.05.2022

Sushanta Tripathy - INFN meet 2022

Relative transverse activity classifier, R_{T}

Relative transverse activity classifier, $R_T = N_{ch}^T / \langle N_{ch}^T \rangle$ (Introduced in P. Skands et. al., Eur. Phys. J. C 76, 299 (2016))

ALICE, JHEP 04 (2020) 192

pp

Relative transverse activity classifier, $R_T = N_{ch}^T / \langle N_{ch}^T \rangle$

- **Transverse:** hardening of spectra with increase in R_{T} (Possibly due to initial and/or final state radiation [1])
- Near and away: softening of spectra with increase in R_{T} . High- p_{T} yields are nearly independent of R_{T} .
- In general, PYTHIA8 and EPOS-LHC describe data qualitatively

[1] G. Bencédi et. al., J.Phys.G48 (2020) 1, 015007

p-Pb

Relative transverse activity classifier, $R_T = N_{ch}^T / \langle N_{ch}^T \rangle$

Transverse: hardening of spectra with increase in R_{T} . Softer compared to pp.

Near and away: softening of **spectra** with increase in R_{T} . High- p_{T} yields are nearly independent of R_{T} .

Similar behavior as seen in pp rather than Pb-Pb: possible presence of MPI in pp and p-Pb.

Pb–Pb

Relative transverse activity classifier, $R_T = N_{ch}^T / \langle N_{ch}^T \rangle$

Similar behavior seen across all topological regions: dominated by soft particles.

In general, PYTHIA8 (Angantyr) and EPOS-LHC describe data qualitatively.

ALI-PREL-346036

10.05.2022

Sushanta Tripathy - INFN meet 2022

Relative transverse activity classifier, $R_T = N_{ch}^T / \langle N_{ch}^T \rangle$

ALI-PREL-346036

Figure The contribution from the jets dominate at low R_{T} and the values are similar for all systems, as one would naively expect for $R_T \rightarrow 0$

10.05.2022

Relative transverse activity classifier, $R_T = N_{ch}^T / \langle N_{ch}^T \rangle$

dominant UE contribution

10.05.2022

Relative transverse activity classifier, $R_T = N_{ch}^T / \langle N_{ch}^T \rangle$

 \Im For large R_T , the $\langle p_T \rangle$ approaches similar values in all three topological regions for a given system:

$$I_X = \frac{\frac{dN_{ch}}{dp_T}}{\frac{dN_{ch}}{dp_T}}_{\text{jet-like signal in X collined}}$$

X = pp, p-Pb and Pb-Pb collisions

- presence of jet quenching. ALICE, Phys. Rev. Lett. 108 (2012) 092301
- 5.02 TeV and the results are presented as a function of $\langle N_{ch}^T \rangle$.

10.05.2022

Sushanta Tripathy - INFN meet 2022

 \bigvee Ix is obtained as a function of the activity in the V0 detector in pp, p-Pb and Pb-Pb collisions at

Jet-like region modifications

Pb–Pb collisions: *I_X* values in toward (away) region exhibit a enhancement (suppression) relative to MB pp with <*N*_{ch}^T>, compatible with the *I*_{AA} results measured by ALICE in Pb–Pb at 2.76 TeV ALICE, Phys. Rev. Lett. 108 (2012) 092301
10.05.2022 Sushanta Tripathy - INFN meet 2022

Jet-like region modifications

the activity in the V0 detector

10.05.2022

- First UE results for p–Pb collisions at the LHC: the charged particle density in the transverse region exhibits the same behaviour in pp and p-Pb collisions
- \mathbb{I} Using R_{T} , one can vary the magnitude of the underlying event (UE) and study the particle production in jet-dominated and UE-dominated regions
- Absence of jet-like modifications in pp and p-Pb collisions. In contrast, Pb-Pb data suggest the presence of jet quenching effects

- First UE results for p–Pb collisions at the LHC: the charged particle density in the transverse region exhibits the same behaviour in pp and p-Pb collisions
- \mathbb{I} Using R_{T} , one can vary the magnitude of the underlying event (UE) and study the particle production in jet-dominated and UE-dominated regions
- Absence of jet-like modifications in pp and p-Pb collisions. In contrast, Pb-Pb data suggest the presence of jet quenching effects

Thank you for your attention!

10.05.2022

Sushanta Tripathy - INFN meet 2022

Back-up

25

ALI-PREL-333058

10.05.2022

- \neq p/ π ratio:
 - Radial flow-like features
 - Model predictions mostly fail to describe the particle ratios quantitatively

\Rightarrow p/ π ratio:

- Radial flow-like features in both the regions.
- Model predictions mostly fail to describe the particle ratios quantitatively
- Ş Ξ/π ratio:
 - show a similar trend to the p/π ratio.
 - \blacksquare high- R_{T} toward region approaches the results in Transverse region.

The results indicate the interplay between UE and jet-like components

