ALICE 2 - LS2 upgrade for Run 3

ALICE 2 - LS3 upgrade for Run 4

ALICE 3 (post-Run 4)

© Klaus Barth

Quinto Incontro Nazionale di Fisica Nucleare - INFN 2022

Laboratori Nazionali del Gran Sasso, 9-11 May 2022

ALICE upgrade and physics prospectives

Domenico Colella

Istituto Nazionale di Fisica Nucleare, Sezione di Bari on behalf of the ALICE Collaboration

QCD Future Physics Opportunities

Figure Credit: MADAI collaboration

Future physics opportunities for high-density QCD with ions and proton beams

- » Characterising the macroscopic long-wavelength QGP properties (transport properties, temperature, new phenomena related to strong EM fields)
- »Accessing the microscopic parton dynamics underlying QGP properties
- »Developing a unified picture of particle production from small (pp) to larger (p–A and A–A) systems
- »Probing parton densities in nuclei at small x and searching for the possible onset of parton saturation

Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams [arXiv:1812.06772v2] Report from Working Group 5 on the Physics of the HL-LHC, and Perspectives at the HE-LHC

Physics goals

» Focus on high precision measurements of rare probes at low p_T

Comparison of different D-mesons is sensitive to the hadronization process of c quarks in the QGP

Physics goals

- » Focus on high precision measurements of rare probes at low pT
 - Heavy-flavour mesons and baryons (down to very low p_T)

New observables in Pb-Pb: baryon production in the charm and beauty sector! For the moment, only observed in pp and p-Pb collisions.

Insight into the interactions with light quarks of the medium and reveal transport properties of the medium

New observables in Pb-Pb: baryon production in the charm and beauty sector! For the moment, only observed in pp and p-Pb collisions.

Physics goals

- » Focus on high precision measurements of rare probes at low pT
 - Heavy-flavour mesons and baryons (down to very low p_T)
 - Charmonium states
 - \rightarrow dissociation/regeneration as tool to study de-confinement and medium temperature

Dileptons from QGP radiation and low-mass vector mesons

- $\rightarrow \chi$ symmetry restoration, initial temperature
- High precision measurement of light and hyper-nuclei
 - \rightarrow production mechanism and degree of collectivity

Physics goals

- » Focus on high precision measurements of rare probes at low pT
 - Heavy-flavour mesons and baryons (down to very low p_T)
 - Charmonium states
 - \rightarrow dissociation/regeneration as tool to study de-confinement and medium temperature
 - Dileptons from QGP radiation and low-mass vector mesons
 - $\rightarrow \chi$ symmetry restoration, initial temperature
 - High precision measurement of light and hyper-nuclei
 - \rightarrow production mechanism and degree of collectivity

Very low S/B ratio prevents selection with hardware trigger

Data taking strategy

» Record large minimum-bias data sample

- \rightarrow read out all Pb-Pb interactions up to maximum LHC collision rate of 50 kHz
- \rightarrow collect \mathscr{L}_{Pb-Pb} = 13 nb⁻¹ (increase Run 2 minimum-bias sample by factor 50-100)

» Improve tracking efficiency and resolution at low- p_T

- \rightarrow increase tracking granularity
- \rightarrow reduce material thickness

» Preserve Particle IDentification (PID)

 \rightarrow Consolidate and speed-up main ALICE PID detectors

ALICE 2 in Run 3 and Run 4

New Fast Interaction Trigger (FIT) detector

Integrated Online-Offline system (O²)

Readout upgrade for other detectors

New Inner Tracking System (ITS2)

ITS upgrade requirements

ALPIDE Monolithic Active Pixel Sensor

- » Improve impact parameter resolution
 - Reduce IP-to-first layer distance (new beam pipe) \rightarrow 22 mm
 - Reduce material budget \rightarrow 0.35% X₀ (Innermost layers)
 - Reduce pixel size $\rightarrow \sim 30 \times 30 \ \mu m^2$
- » Improve tracking efficiency and p_T resolution at low p_T
 - Increase granularity \rightarrow from 6 to 7 layers, all pixels
 - Increase readout capabilities \rightarrow 100 kHz

10 m² active silicon area 12.5×10⁹ pixels

Muon Spectrometer (MUON)

- » Absorber suppresses all particles except muons
- » Limitation: multiple scattering in absorber smears track information at vertex

Muon Forward Tracker (MFT)

- » Add vertexing and tracking capabilities to MUON
 - \rightarrow matching muon track with MFT tracks
 - \rightarrow prompt and displaced J/ ψ disentangling
 - \rightarrow precise measurement of low-mass dimuons

Fully based on ALPIDE MAPS

 $\rightarrow \psi(2S)$ visible even in central Pb-Pb

New TPC Readout Chambers (ROCs)

Readout chambers replacement: **MWPC** \rightarrow **GEM stack**

- » Removes rate restriction (due to the usage of Gating Grid)
- » Reduces ion back-flow to under $1\% \rightarrow$ no Gating Grid
- » Space charge distortions are minimised preserving PID capabilities

Continuous readout TPC at 50 kHz \rightarrow average pileup of 5 events

LP

LP

- more than 3 TB/s \rightarrow GPU-based data reduction

New readout chambers: 4-GEM stack

- » Combination of standard (S) and large pitch (LP) GEM foils
- » Highly optimised HV configuration

GEM 1 - U_{GEM2}=255 V – U_{GEM2}=285 V GEM 2 a (% GEM 3 GEM 4 10 pad plane 0.0 0.5 1.5 2.0 2.5 1.0 3.0 IBF(%)

Conservative operational limits: IBF < 1 %, local energy resolution < 12 % Extended operational range: IBF < 2 %, energy resolution < 14 %

» Diameter/Length: 5 m/5 m

U_{GEM3}/U_{GEM4}=0.95

- » Gas: Ne-CO₂-N₂, Ar-CO₂
- » Max. drift time: ~100 μs

Integrated Online-Offline system (O²)

Readout upgrade for other detectors

» Continuous readout

- Upgrade of all detector readout boards
- Heartbeat from CTP
- Timeframe (instead of events)

» Multi-step reconstruction chain

• Detector \rightarrow FLP \rightarrow EPN \rightarrow Storage

» Synchronous processing (EPN farm)

- Data volume reduction (factor 35)
- Online calibration
- Clusterization and tracking (using GPUs)
 → Compressed Time Frames (CTF)

» Asynchronous processing (EPN farm/T0/T1)

- Final refined reconstruction
 - \rightarrow Analysis Object Data (AOD)

MFT installation (Jan 2021)

ITS installation (Feb-Jun 2021)

FIT installation (Jan-Jul 2021)

ALI-PERF-499091

ALICE 2 in Run 3 and Run 4

Now Muon Forward Trackor (MET

ew TPC Readout Chambers (ROCs)

New Fast Interaction Trigger (FIT) detector

Readout upgrade for other detectors

Halfila

г **0.0**°

4.9°

9.7°

14.6° 🚽

19.5°

24.4° <u>c</u>

29.2°

34.1°

39.0°

511

447

383

319

- 255 စ္တိ

191

127

63

300

99.9% efficiency

99.99% efficiency

250

New Inner Tracking System (ITS3)

0.7

. 0.6

<u>도</u> 0.5

.1 tracks

፩ 0.3 °X/ X/X 0.2

0.1

0.0

for

Silicor mean = 0.05 9 Truly cylindrical, wafer-size sensors for homogeneous inner tracker with ultra-low material budget

0

0

50

100

150

Threshold (e⁻)

Well advanced R&D

- » Bent ALPIDE (18 mm radius) as efficient as when flat
- » Silicon bending procedure developed (thickness <50 µm)
- » New chip (65 nm technology)
 - First digital/analog structures under characterisation
 - First stitching application submitted for production

200

New Inner Tracking System (ITS3)

New Inner Tracking System (ITS3)

» Improved pointing resolution and tracking efficiency for low momenta (×2 at all p_{T})

Beauty-quark hadronisation

» B_{S}^{0} production expected to be enhanced

- hadronisation of beauty quarks via recombination + enhanced strange-quark production in the QGP
 - » Significance improvement by a factor 2 with ITS3 \rightarrow access to B^0_S at very low p_T

10

5

p_¹⁵ (GeV/*c*)

0₀

ALI-SIMUL-348395

New Forward Calorimeter (FoCal)

Main goal

» Constrain gluon nuclear PDF at small Bjorken-x \rightarrow Measure isolated photons at forward rapidity

Main challenge

- » Separate photons and π^0 at high energy
- \rightarrow two photon separation from π^0 decay ~2 mm
- \rightarrow small Molière radius and high granularity readout

LoI (CERN-LHCC-2020-009): https://cds.cern.ch/record/2719928?In=en

FoCal-E

- \rightarrow high granularity electromagnetic calorimeter for γ and $\pi^{_0}$
- \rightarrow Tungsten alloy plates (3.5 mm ~ 1 X₀)
- \rightarrow Silicon sensors with hybrid design
 - Si-pads (~1 cm²) for energy measurement
 - MAPS (~30×30 $\mu m^2)$ for two-shower separation

FoCal-H

 \rightarrow conventional Pb-Sc sampling hadronic calorimeter for photon isolation and jets

"Ambition to design a new experiment to continue with a rich heavy-ion programme at the HL-LHC" mentioned in the Update of the European strategy for particle physics

A next-generation LHC HI (soft-QCD) experiment

- » Compact, all-silicon "nearly massless" detector with excellent low-*p*^T tracking performance
- » Increase rate capabilities: luminosities x20 x50 higher than in ALICE 2
- » Unprecedented insight into QGP

Expression of Interest (2019): <u>https://arxiv.org/abs/1902.01211</u> Lol (2022) [LHCC-2022-009]: <u>https://cds.cern.ch/record/2803563?In=fr</u>

Physics program

- » Charm and beauty hadrons correlation over a wide rapidity range
- » Systematic measurements of multiply heavy-flavoured hadrons (expected enhanced production from the QGP)
- » Production and behaviour of the charmed exotic states in the QGP and their structure
- » Multi-differential measurements of electromagnetic radiation from the QGP (probe early evolution and restoration of chiral symmetry)
- » Measurements of net-quantum number fluctuations over a wide rapidity range (constrain susceptibilities of QGP and to test the realisation of a cross-over phase transition)

Expression of Interest (2019): <u>https://arxiv.org/abs/1902.01211</u> Lol (2022) [LHCC-2022-009]: <u>https://cds.cern.ch/record/2803563?In=fr</u>

ALICE 3

A next-generation Heavy Ion experiment

- » Ultra-lightweight silicon tracker with excellent vertexing
 - \rightarrow 12 tracking barrel layers + disks based on MAPS
- » Particle identification
 - → TOF determination (20 ps time resolution), Cherenkov, pre-shower/calorimeter
- » Dedicated forward detector for soft photons (conversion + Si tracker)
- » Fast to profit from higher luminosity (x20 x50 higher than in ALICE 2)
- » Kinematic range down to very low p_T : 50 MeV/c (central barrel), 10 MeV/c (forward dedicated detector)
- » Transverse momentum resolution : $\sigma_p/p \sim 1 \%$
- » Large acceptance: barrel + end-caps $\Delta \eta$ = 8

ALICE 3

Main R&D challenges

- » Inner tracker
 - \rightarrow ultra-thin layout: flexible wafer-scale sensors (MAPS/ITS3)
 - \rightarrow minimal distance from IP requires retractable detector
 - \rightarrow position resolution O(1 μm) requires small pixel pitch
- » Outer tracker
 - \rightarrow large areas to instrument O(100 m²): develop cost-effective sensors
 - \rightarrow low material budget requires low-weight support and services
- » Time of Flight
 - → TOF resolution < 20 ps needed on the system level requires advances both on sensors and microelectronics
 - \rightarrow large areas to instrument: develop cost-effective sensors

ALICE 3

Multi-charm baryons 10 pointing resolution (µm) ALICE 3 study π » Extreme benchmarks for hadronization mechanisms in small and large systems $\eta = 0$ R_{min} = 100 cm **ITS2** • Large enhancement (up to x1000) w.r.t. SPS if Layout V1 ITS2 formed by coalescence of uncorrelated charm quarks ITS3 10^{2} - ITS3 » Ω_{CC} and Ω_{CCC} not yet observed ALICE : Identification through topological reconstruction impact parameter resolution y (cm) ALICE 3 Full Simulation pp $\sqrt{s_{_{ m NN}}}$ = 14 TeV ~10 µm @p⊤ = 200 MeV 10 10⁻² 10⁻¹ 10 10^{2} 50 $p_{_{T}}$ (GeV/c) Λ daughters Significance 12 Λ flight path (ct = 7.9 cm) **10**⊨ 7.0 3.75 -50 **5.1** Ξ flight path $(c\tau = 4.9 \text{ cm})$ (not to scale) -100 100 -100 -50 50 x (cm) ALICE 3 Study Pb-Pb 0-10% PYTHIA Impact parameter, momenta resolution and PID 10⁻¹ Full acceptance over lnl<4.0 Particle + antiparticle are key technologies to be pushed at the state of art $L_{int} = 35 \text{ nb}^{-1}$ 2 6 10 12 14

 $p_{_{\rm T}}$ (GeV/c)

SUMMARY

ALICE 2 - LS2 (now) → Upgrade of ALICE on track

<u>ALICE 2 - LS3 (2029)</u> \rightarrow New upgrades for Run 4

- » FoCal: photons, π⁰, jets in the forward region to constrain gluon nPDF at low Bjorken-x
- » ITS3: truly cylindrical silicon layers made of ultra-thin wafer-size MAPS
 - Iow-mass dielectrons (→ QGP temperature)
 - improve HF-particle performance + search for exotic charm nuclei

ALICE 3 (beyond 2035) → Continue heavy-ion programme in HL-LHC era

- » Possibility of a "nearly-massless" silicon detector
 - multi-HF particles
 - low-mass dielectrons and soft photons

Plasma di quark e gluoni II

- Inspecting the charm hadronization via measurements of charm baryon production in hadronic collisions with the ALICE experiment at the LHC M. Faggin (Tuesday 11:05)
- Strange hadron production in and out of jets in proton-proton collisions with ALICE C. De Martin (Tuesday 11:25)
- Charged particle production as a function of underlying event-activity and search for jet-like modifications in small systems with ALICE S. Tripathy (Tuesday 11:45)
- Measurement of light (anti)nuclei production with ALICE A. Balbino (Tuesday 12:05)
- Strangeness production in pp as a function of particle multiplicity and effective energy with ALICE F. Ercolessi (Tuesday 12:25)

Poster session

- ALICE Muon Spectrometer upgrade and commissioning for the LHC Run 3 L. Terlizzi
- First bent wafer-scale sensor in truly-cylindrical geometry for the ALICE ITS3 detector A. G. Torres Ramos
- Light flavour production at the LHC: latest results from Run 2 and towards Run 3 N. Jacazio
- Measuring μ_B at the LHC with ALICE via antiparticle-over-particle ratios M. Ciacco
- Hypertriton production in large and small systems F. Mazzaschi
- Non-prompt D⁺_S mesons production in pp and Pb-Pb collisions with ALICE S. Politano
- Charged K* multiplicity dependent analysis in pp collisions at $\sqrt{s} = 13 TeV$ with ALICE A. Rosano
- Produzione di lesioni D in collisioni pp con ALICE a $\sqrt{s} = 13 TeV$ in LHC in funzione della molteplicità M. Giacalone
- Investigating heavy-flavour fragmentation and hadronization with jets and correlation measurements with ALICE A. Palasciano
- Inclusive muon elliptic flow measurement in pp collision at $\sqrt{s} = 13 TeV$ with ALICE experiment S. Boi

More from ALICE at this conference

Backup

Physics goals

- » Focus on high precision measurements of rare probes at low pT
 - Heavy-flavour mesons and baryons (down to very low p_T)
 - Charmonium states

 J/Ψ prompt - decay separation thanks to improved vertexing capabilities

- Heavy-flavour mesons and baryons (down to very low p_T)
- Charmonium states
- Di-leptons from QGP radiation and low-mass vector mesons

Observable sensitive to:

- » The modification of the ρ meson spectral function due to chiral symmetry restoration
- » Thermal radiation from QGP

Physics goals

» Focus on high precision measurements of rare probes at low pT

- Heavy-flavour mesons and baryons (down to very low p_T)
- Charmonium states
- Di-leptons from QGP radiation and low-mass vector mesons

Improvement of dielectron mass spectrum Background yields from know hadronic + HF decays can be subtracted precisely 0.9

Low Mass Dielectrons $|\eta| <$

New Inner Tracking System (ITS3)

New Fast Interaction Trigger (FIT) detector

FIT is the upgrade of the **T0**, **V0** and **AD detectors**: triggers, luminosity monitoring, background reduction, collision time for PID, centrality and event plane determination

» Cherenkov radiators (quartz) + Micro-channel plate PMTs [latency < 425 ns and time resolution < 20 ps]</p>

» Large area scintillators [latency < 425 ns and time resolution ~250 ps]

ALICE 2 in Run 3 and Run 4

Physics goals

» Focus on high precision measurements of rare probes at low pT

- Heavy-flavour mesons and baryons (down to very low p_T)
 - \rightarrow mechanisms of quark-medium interaction
- Charmonium states
 - \rightarrow dissociation/regeneration as tool to study de-confinement and medium temperature
- Di-leptons from QGP radiation and low-mass vector mesons
 - $\rightarrow \chi$ symmetry restoration, initial temperature
- High precision measurement of light and hyper-nuclei
 - \rightarrow production mechanism and degree of collectivity
- » Very low S/B ratio prevents selection with hardware trigger

New Inner Tracking System (ITS 2)

Based on the ALPIDE Monolithic Active Pixel Sensor

- » In-pixel amplification, shaping discrimination and Multiple-Event Buffers (MEB)
- » In-matrix data sparsification
- » High detection efficiency (>99%) and low fake-hit rate (<< 10⁻⁶ /pixel/event)
- » Radiation tolerant:
 - > 270 krad TID
- > 1.7×10¹² 1 MeV/n_{eq} NIEL
- » Low power consumption ~40 mW/cm²

	ITS (Run 1/Run 2)	ITS 2
Number of layers	6 (pixel, drift, μ strip)	7 (MAPS)
Rapidity range	η < 0.9	η < 1.3
Material budget per layer	1.14% (SPD)	0.35% (IB)
Distance to interaction point	39 mm	22 mm
Pixel size	50 x 425 μm ²	29 x 27 µm²
Spatial resolution	12 μm x 100 μm	5 μm x 5 μm
Max. readout speed Pb-Pb	1 kHz	100 kHz

Performance

New Inner Tracking System (ITS 2)

Physics goals

- » Focus on high precision measurements of rare probes at low pT
 - Heavy-flavour mesons and baryons (down to very low p_T)
 - Charmonium states

New Muon Forward Tracker (MFT)

- » Based on ALPIDE chips
 - \rightarrow 920 chips assembled on 280 ladders
 - \rightarrow 10 half-disks, 2 detection planes each
 - \rightarrow total surface = 0.4 m²
- » Pseudorapidity coverage: $-3.6 < \eta < -2.45$
- » Expected doses:
 - \rightarrow < 300 krad TID
 - \rightarrow < 2×10¹² 1 MeV/n_{eq} NIEL

Assembly and integration completed

New TPC Readout Chambers (ROCs)

Time Projection Chamber

- » Diameter/Length: 5 m/5 m
- » Gas: Ne-CO₂-N₂, Ar-CO₂
- » Max. drift time: ~100 μ s
- » 18 sectors on each side
- » Inner/outer readout chamber:

Previous detector (Run 1 and Run 2)

- 72 MWPCs
- ~550000 readout pads
- Wire Gating Grid to minimize Ion Back-Flow (IBF)
- Rate limited to few kHz

TPC Upgrade requirements

- Nominal gain = 2000 in Ne-CO₂-N₂ (90-10-5)
- Ion Back-Flow (IBF) < 1% (ϵ = 20)
- Energy resolution: $\sigma_{\rm E}/{\rm E}$ < 12% for X-ray from ³³Fe
- Stable operation under LHC Run 3 condition
- Unprecedented challenges in terms of loads and performance

Operate the new TPC at 50 kHz \rightarrow no Gating Grid

New TPC Readout Chambers (ROCs)

New readout chambers: 4-GEM stack

- · Combination of standard (S) and large pitch (LP) GEM foils
- Highly optimised HV configuration
- Result of intensive R&D

CRU Rev 1 FEC with rigid flex Online farm 20 GB/s Tape

Yield = 97.4%

3.3 TB/s

500 GB/s

Readout Electronics

- Newly developed FE SAMPA ASIC (130 nm CMOS by TSMC)
 - 32 channels, PASA pre-amplifier + 10-bit ADC
 - Programmable conversion gain and peaking times
 - Readout mode: continuous or triggered
- Front-End Cards (FECs)
 - 5 SAMPA chips per FEC (3276 FECs in total)
 - System continuously digitises signals at 5 MHz
 - All ADC values read at 3.3 TB/s and sent to CRU

Conservative operational limits: IBF < 1 %, local energy resolution < 12 %

Extended operational range: IBF < 2 %, energy resolution < 14 %

New TPC Readout Chambers (ROCs)

New Inner Tracking System (ITS3)

10

0

20

30

Azimuthal angle [°]

40

50

Implementation

- » Air cooling
 - \rightarrow possible below 20 mW/cm² and if peripheral outside fiducial volume
- » Wafer-scale chip
 - \rightarrow Stitching to overcome reticle size limit
 - \rightarrow Neither support structure nor electrical substrate necessary
- » Thinning and bending
 - \rightarrow Currently 50 μ m (25 μ m active area)
 - \rightarrow Below 50 μ m Si wafers become flexible, "paper like"
 - \rightarrow Smaller pixels would allow shallower active volume

Observations

- » Silicon makes only about 15% of total material
- » Irregularities due to support/cooling and overlap

Improvements

Silicon

mean = 0.05 %

- » Removal of water cooling
- ▶ Remov**possible**bilifigpower consumption stays below 20 mW/cm²
- » Reinovarecircultriboard (power+data) → possible if integrated on chip
- » Removal circuit board (nower+data) » Removal of mechanical support
- → benefit from increased stiffness by rolling Si wafers Removal of mechanical support
 - benefit from increased stiffness by rolling Si wafers

New Inner Tracking System (ITS3)

Layout and Mechanics

- » Smaller beam pipe diameter and wall thickness (0.14% X₀)
- » Sensor thickness 20-40 µm (0.02 0.04% X₀)
- » Total material reduced by a factor 3
- » Material homogeneously distributed
 - \rightarrow essentially zero systematic error from material distribution
- » Sensors held in place by low-density carbon foam
- » Cooling at the extremities (chip peripheries)

Backup - ITS 3 details

Beam pipe thickness: 500μm (0.14% X₀) Sensor thickness: 20 – 40μm (0.03 - 0.05% X₀)

Beampipe inner/outer radius (mm)		16.0/16.5	
IB Layer parameters	Layer 0	Layer 1	Layer 2
Radial position (mm)	18.0	24.0	30.0
Length (sensitive area) (mm)	270	270	270
Pseudo-rapidity coverage ^a	±2.5	±2.3	±2.0
Active area (cm ²)	305	408	508
Pixel sensors dimensions (mm ²)	280×56.5	280×75.5	280×94
Number of pixel sensors / layer		2	
Pixel size (µm ²)	$O(15 \times 15)^b$		

^{*a*} The pseudorapidity coverage of the detector layers refers to tracks originating from a collision at the nominal interaction point (z = 0).

^b For the fallback solution the pixel size is about a factor two larger $(O(30 \times 30) \,\mu\text{m}^2)$.

Backup - ITS 3 details

Backup - FOCAL-E performance

Backup - ALICE 2 Tracking in central barrel ($|\eta| < 0.9$)

Space-Charge Distortions in the TPC

TPC GEM configuration designed to reduce to the minimum the ion backflow (< 1%) $\circ\,$ Still, positive charge accumulating and moving in the TPC ightarrow modified E-field ightarrow distortions in the TPC

Tracking in the central barrel

Challenge in Run 3 + 4!

- overlap of multiple collisions (5 collisions in the TPC drift time @50 kHz Pb-Pb)
- with TPC clusters without a well-defined z coordinate, but just a time (t)
- presence of distortion corrections that are position dependent

 $z = (t - t_{vertex}) * v_{drift}$

Tracking in the central barrel

Challenge in Run 3 + 4!

- **overlap** of multiple collisions (5 collisions in the TPC drift time @50 kHz Pb-Pb)
- with TPC clusters without a well-defined z coordinate, but just a time (t)
- presence of **distortion** corrections that are position dependent

Standalone ITS tracking

- Standalone TPC tracking, scaling t linearly to an arbitrary z. • Extrapolate to x = 0, define z = 0 as if the track was primary \rightarrow good enough at this stage (sync!)
- Track following to find missing clusters

Tracking in the central barrel

Challenge in Run 3 + 4!

• overlap of multiple collisions (5 collisions in the TPC drift time @50 kHz Pb-Pb)

Standalone ITS tracking

→ good enough at this stage (sync!)

Track following to find missing clusters

Find ITS-TPC track compatibility using times

Standalone TPC tracking, scaling t linearly to an arbitrary z.

• Extrapolate to x = 0, define z = 0 as if the track was primary

• Refine z = 0 estimate, refit track with best precision

- with TPC clusters without a well-defined z coordinate, but **just a time** (t)
- presence of **distortion** corrections that are position dependen

Tracking in the central barrel

Challenge in Run 3 + 4!

asy

• overlap of multiple collisions (5 collisions in the TPC drift time @50 kHz Pb-Pb) • with TPC clusters without a well-defined z coordinate, but just a time (t) • presence of **distortion** corrections that are position depende

Standalone ITS tracking

TPC track

Prolong into TRD / TOF

→ good enough at this stage (sync!) Track following to find missing clusters Refine z = 0 estimate, refit track with best precision Find ITS-TPC track compatibility using times Match TPC track to ITS track, fixing z-position and t of the

Refit ITS + TPC track outwards and inwards

Standalone TPC tracking, scaling t linearly to an arbitrary z Extrapolate to x = 0. define z = 0 as if the track was primary

More on TPC Space-Charge Distortions

Ion Back Flow	lons from 8000 –	Space-charge flu	ctuations
$t_{drift, ion} = 160 - 200 \text{ ms}$	10000 events in the	~2 – 3% (5 – 7	mm >>
IR = 50 kHz	TPC drift volume	intrinsic resolution	n, 200 μm)
Org. 0.05 Contributions to the fluct. IM= 0.045 Image: Contributions to the fluct. 0.045	uations Syl pr nult) r track, 20000 up events Will use Aver will use Aver macp occur Will use Aver macp occur Will use Aver macp occur uther the the the the the the the the the the	uired blution: O(mm) age distortion , scaled to pancy. uations corrected), ory of digital ents (charge at readout plane) grated over 1 ms.	Asynchronous processing Required resolution: O(100 µm) Distortion map from ITS-TPC-TRD-TOF interpolation. Fluctuations corrected in 3D every 5 ms with the digital currents' history from previous 160 ms.