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Current Status of low-energy nuclear physics

neutrons

pr
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on

s

Composite system of interacting fermions
Binding and limits of stability
Coexistence of individual and collective behaviors
Self-organization and emerging phenomena
EOS of neutron star matter

Experimental 
programs

RIKEN, FAIR, FRIB…

Stable nuclei

Unstable nuclei

r-process path…

• ~3,200 known isotopes
• ~7,000 predicted to exist
• Correlation characterised

in full for ~283 stable
Nature 473, 25  (2011); 486, 509 (2012)
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Current Status of low-energy nuclear physics

neutrons

pr
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I) Understanding the nuclear force
QCD-derived; 3-nucleon forces (3NFs)
First principle (ab-initio) predictions

Composite system of interacting fermions
Binding and limits of stability
Coexistence of individual and collective behaviors
Self-organization and emerging phenomena
EOS of neutron star matter

Experimental programs
RIKEN, FAIR, FRIB, ISAC…

Stable nuclei

Unstable nuclei

r-process path…
II) Nuclear correlations
Fully known for stable isotopes
[C. Barbieri and W. H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)]

Neutron-rich nuclei; Shell evolution (far from stability)

• ~3,200 known isotopes
• ~7,000 predicted to exist
• Correlation characterised

in full for ~283 stable
Nature 473, 25  (2011); 486, 509 (2012)

III) Interdisciplinary character
Astrophysics
Tests of the standard model
Other fermionic systems:

ultracold gasses; molecules;
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Reach of ab initio methods across the nuclear chart

Key developments in SCGF:
[V. Somà, Front. Phys. 8, 340 (2020)]

Dyson ADC(2-5)
Schirmer 1983 (formalism)

Particle-vibration coupling, FRPA(3)
CB 2000, 2007

Gorkov ADC(2): open shells!
Somà 2011, 2013

3-nucleon forces basic formalism
Carbone, Cipollone 2013
Raimondi 2018

Gorkov ADC(3) and higher orders (automatic)
Raimoindi, Arthuis 2019

Deformation,  Symmetry restoration
???
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H. Hergert, Frontiers in Phys 8, 379 (2020)

P. Arthuis 2020
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FRONTIERS topical review (doi: 10.3389/fphy.2020.626976) :

H. Hergert, Frontiers in Phys. 8, 379 (2020)

V. Somà, Frontiers in Phys. 8, 340 (2020)

Editors: L. Coraggio, S. Pastore, CB
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•A complete expansion requires all 
types of particle-vibration coupling

•The Self-energy S«(w) yields both
single-particle states and scattering

The FRPA Method in Two Words

n p

º particle º hole

…these modes are all resummed
exactly and to all orders in a 

ab initio many-body expansion.

“Extended”
Hartree Fock

R(2p1h)S«(w) = R(2h1p)

CB et al., 
Phys. Rev. C63, 034313 (2001)
Phys. Rev. A76, 052503 (2007)
Phys. Rev. C79, 064313 (2009)

Particle vibration coupling is the main mechanism driving the redistribution and fragmentation 
of particle strength—expecially in the quasielastic regions around the Fermi surface…
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gII(w)

Π(ph)(w)

Dyson
Eq.

Ionization energies/
affinities, in atoms

[CB, D. Van Neck,
AIP Conf.Proc.1120,104 (‘09) & in prep]

Isovector response
for 32Ar, 34Ar
Proton 
Pygmy

[C. B., K. Langanke, et al., Phys Rev. C77, 024304 (2008)]

IVGDR
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16O(e,e’pn)14N @ MAINZ

[C. B., C. Giusti, et al.
Phys Rev. C70, 014606 (2004)
D. Middelton, et al.
arXiv:0907.1758; EPJA in print]
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This Work
Lister and Sayres, Phys Rev 143, 745

Prelim
inary

— SCGF      

arXiv:1612.01478 [nucl-th]

Optical potential

Binding energies
[PRL. 111, 062501 (2013),
PRC 92, 014306 (2015), PRC89, 061301R (2014)]
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July 10-12 2010, 4th TIGRESS Science Workshop, SFU Sonia Bacca

Nuclear Forces Frontiers

34

Use effective degrees of freedom: p,n,pions

Effective Field Theory:  Bridges the non-perturbative low-energy regime of QCD with forces
                                      among nucleons

L =
⇤

k

ck

�
Q

�b

⇥k

Have a systematic expansion of the Hamiltonian 
in terms of diagrams

Construct the most general Hamiltonian which is 
consistent with the chiral symmetry of QCD

(3NFs arise naturally at N2LO)

Chiral EFT for nuclear forces:

Realistic nuclear forces form Chiral EFT
Benchmarking di!erent ab-initio methods in the 

oxgyen chain
!

Hebeler,'Holt,'Menendez,'Schwenk,''Ann.'Rev.'Nucl.'Part.'Sci.'in'press'(2015)'

Calcula7ons'based'on'
chiral'NN'and'3NF'forces.'
Con7nuum'not'taken'into'
account''

K. Hebeler et al., Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)

See also:
A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013)
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A. Cipollone, CB, P. Navrátil, Phys. Rev. C 92, 014306 (2015);
Phys. Rev. Lett. 111, 062501 (2013)

Neutron spectral function of Oxygens

14O 16O 22O 24O 28O

Neutron quasiparticle
energies
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Somà SCGF Theory for Atomic Nuclei

FIGURE 3 | (Left) ADC(3) calculations of closed-shell oxygen isotopes performed with the NN+3N(400) Hamiltonian (blue points and lines). For reference, results with

only original 2N operators are displayed (red points and lines). (Top) One-neutron addition and removal energies associated to dominant quasiparticle peaks. (Bottom)

Ground-state energies compared with experimental values (gray bars). Adapted figure with permission from [35], copyright (2013) by the American Physical Society.

(Right) ADC(2) calculations of even-even calcium isotopes performed with the NN+3N(400), NNLOsat, and NN+3N(lnl) Hamiltonians (colored points and lines),

compared with measured and extrapolated data (black points). ADC(3) results are depicted as horizontal lines when available. (Top) Total ground-state energies.

(Bottom) Two-neutron separation energies. Adapted figure with permission from [40], copyright (2020) by the American Physical Society.

memory usage (due to the larger amount of matrix elements to be
stored). As a consequence, on a laptop and for realistic bases, even
an ADC(1) calculation becomes heavy in terms of CPU and one
quickly reaches the limits in terms of available RAM13. ADC(2)
andADC(3) calculations require optimized implementations and
the use of a high-performance computing center, with typical
running times of a few thousand and tens of thousands CPU
hours, respectively.

4. RECENT APPLICATIONS

4.1. Ground-State Properties
The total ground-state energy, or binding energy, of a nucleus
constitutes the most basic nuclear structure observable. In
Green’s function theory, total energies are preferably computed
via the generalized GMK sum-rule (Equation 6). While earlier
applications made use of a 2N-only Hamiltonian, possibly
complemented by a phenomenological correction to compensate
for missing 3N [29, 30, 38], starting from 2013 calculations
with realistic 2N + 3N interactions could be routinely
performed. A representative example concerns the oxygen
chain [35] and is shown in Figure 3 (left). In the bottom panel,

13See also discussion in section 5.3 on storage of 3N matrix elements.

ADC(3) ground-state energies are displayed for closed-shell
oxygen isotopes, computed with the NN+3N(400) interaction,
respectively excluding and including original 3N operators14.
One notices that the addition of 3N forces is crucial for a
quantitative reproduction of experimental data. In particular,
when only a 2N interaction is considered, the neutron dripline
is wrongly located at N = 20, while it is correctly reproduced at
24O in the presence of 3N forces.

In such a context it can be instructive to inspect one-
neutron addition and removal energies associated to dominant
quasiparticle peaks, see top-left panel of Figure 3. One sees
that the 3/2+ fragment becomes bound in neutron-rich
isotopes when the 2N-only Hamiltonian is employed. When 3N
interactions are switched on, it is instead pushed up and remains
unbound all the way to 28O, thus explaining the position of
the dripline. This observation confirmed the repulsive character
of the Fujita-Miyazawa 3N interaction, as previously discussed
in [99].

This result was one of the first successful applications
of ab initio techniques beyond light nuclei. The oxygen

14The SRG evolution described in section 3.4 and standardly applied to nuclear
Hamiltonians induces additional many-body operators that need to be taken into
account [6]. Hence, one has to distinguish between original and induced e.g., 3N
forces.

Frontiers in Physics | www.frontiersin.org 8 September 2020 | Volume 8 | Article 340

N3LO-lnl: a  second-generation Chiral EFT Hamiltonian
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four di↵erent (2N+3N) interactions. The experimental charge
density of 36S is also visible [17].
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distribution along with associated e↵ective single-particle en-
ergies in 34Si. Left panel: neutrons. Right panel: protons.
Dashed lines indicate corresponding Fermi energies.
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FIG. 11. One-neutron addition spectral strength distribution
for states above the Fermi energy. Left panel: 34Si (final states
in 35Si). Right panel: 36S (final states in 37S). Experimental
states observed via (d,p) reactions are represented in dashed
lines. Experimental data are taken from Refs. [9, 13, 14].

Validated by charge distributions and neutron quasiparticle spectra:
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FIG. 3. ADC(2) ground-state point-proton density distribu-
tion of 34Si for di↵erent model space dimensions at ~! = 20
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Nmax = 13 (right). Upper panels: linear vertical scale. Lower
panels: logarithmic vertical scale.

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1 S36 charge (exp.)
Si34 proton
Si34 charge
S36 proton
S36 charge

r [fm]

�
 [f

m
-3

]

FIG. 4. Charge and proton densities of 34Si and 36S at the
ADC(2) level. The experimental charge density of 36S (taken
from Ref. [17]) is also visible.

0 20 40 60 80 100 120 140
1x10-7
1x10-6
1x10-5
1x10-4
1x10-3

0.01
0.1

1
10

100 Si34
S36
S36 scaled

! [deg]

��
�!�
��

FIG. 5. Angular dependence of the form factor obtained for
300 MeV electron scattering on 34Si and 36S. A calculation
with the charge density of 36S scaled to 14 protons is shown
for comparison.
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- 34Si is unstable, charge distribution is still unknown

- Suggested central depletion from mean-field 
simulations

- Ab-initio theory confirms predictions

- Other theoretical and experimental evidence:
Phys. Rev. C 79, 034318 (2009),
Nature Physics 13, 152–156 (2017).

Duguet, Somà, Lecuse, CB, Navrátil,
Phys.Rev. C95, 034319 (2017)
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d3/2 — s1/2 inversion in K isotopes and bubbles at N=28
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FIG. 3. (Color online) Energy splitting between the 1/2+
1

and 3/2+
1 states in the odd-K isotopes compared to shell-

model calculations using the the SDPF-U [9], the SDPF-
Umod, the SDPF-MU [11], the SDPF-MUr [43], the SDPF-
MUs effective interactions and the ab initio SCGF calculation
employing the NNLOsat [46] and the NN+3N(lnl) [36]
interactions. The rectangular regions for 51,53K represent
estimated theoretical uncertainties due to many-body trun-
cations. Experimental data are taken from Ref. [21] and this
work.

experiment and will be very useful in obtaining more
insight of the effective NN interaction, including global
ones like SDPF-MU’s.

In the shell-model calculations, the increased energy
splitting from 49K to 51,53K is a consequence of the
restoration of a sizeable Z = 16 sub-shell gap in 51K
and 53K, which are calculated to be 0.95 MeV and
1.38 MeV, respectively, when the SDPF-MUs interaction
is employed. The near degeneracy of the ⇡1d3/2 and
⇡2s1/2 orbitals around N = 28 has been suggested to
play a key role in the development of collectivity in
neutron-rich silicon, sulfur and argon isotopes [11, 44, 45].
The restoration of the Z = 16 sub-shell gap would
therefore have the profound consequence of supressing
the collectivity induced by proton excitations for Z =
14, 16, 18 nuclei lying beyond N = 30.

The energy splittings along the odd-K isotopic chain
also provide a testing ground to validate the chiral
effective field theory (EFT) interactions in the ab initio
many-body calculations, which have extended their reach
to entire medium-mass isotopic chains very recently.
In particular, we compare the experimental data to
the initial ADC(2) Gorkov-SCGF calculations [47, 48]
performed in a model space of up to 14 harmonic
oscillator shells including three-nucleon (3N ) interactions
limited to basis states with N 1 + N 2 + N 3  16 where
N = 2n + l. We employed two sets of state-of-the-art
EFT interactions: the NNLOsat [46] and the newly de-
veloped NN+3N(lnl) [36]. Uncertainties associated with

the approximated many-body scheme were estimated
by differences between ADC(2) and available ADC(3)
results. As shown in Fig. 3, the NNLOsat calculations
systematically underestimate the splittings in odd-K
isotopes by ⇠1 MeV, although the same interaction
successfully reproduces charge radii, binding energies and
spectroscopic properties of lighter medium-mass nuclei
[46, 49]. In contrast, the NN+3N(lnl) calculations show
better overall agreement with the experimental data,
consistent with its application on the mass prediction of
48�56Ti [36].

So far, state-of-the-art shell-model and ab initio
calculations reproduce experimental energy splittings at
all the shell closures including N = 20, 28, 32, 34.
The ab initio NN+3N(lnl) calculations predict that the
energy splitting increases linearly from 0.59 MeV in 53K
to 1.35 MeV in 59K. The two modified phenomenological
effective interactions SDPF-Umod and SDPF-MUs antic-
ipate similar trends as shown in Fig. 3, reaching 1.88 MeV
and 1.38 MeV at 59K, respectively, equivalent to the
corresponding effective single-particle energy differences
between the ⇡1d3/2 and ⇡2s1/2 orbitals. Since the
valence neutrons in the shell-model calculations are
restricted to pf -shells below N = 40, the consistent
energy-splitting increase towards 59K, still to be proven
experimentally, supports the N = 40 shell closure
assumed in all the above shell-model calculations.

In summary, we have reported on the first measure-
ment of the low-lying states in 51,53K populated from
the 52,54Ca(p,2p) reactions at ⇠250 MeV/nucleon. We
implemented a new technique based on reaction vertex
tracking to achieve momentum resolutions of ⇠40 MeV/c
when using a thick liquid-hydrogen target. The 1/2+1 !
3/2+1 transitions of 51,53K were measured for the first
time and the spins-parities were unambiguously assigned
based on the measured cross sections and parallel mo-
mentum distributions. The measured E (1/2+1 ) - E (3/2+1 )
energy splittings in 51,53K provide a stringent constraint
on the ⇡2s1/21d3/2-⌫2p1/2p3/2 matrix elements. The
restoration of the natural ordering of the 1/2+1 and
3/2+1 proton-hole states in 51,53K is interpreted as a
restoration of a sizeable Z = 16 sub-shell gap beyond
N = 30, having as a consequence the suppression of
proton-induced collectivity in the region. State-of-the-
art shell model calculations and ab initio calculations all
predict consistently the continuation and enhancement
of the restoration towards N = 40.
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Electron-Ion Trap  colliders…

study of the spectrometer acceptance. These electrodes
form an electrostatic potential lower than the acceleration
voltage of delivered target ions by a few V to make the ion
motion slow and to make confinement time longer.
Electrodes at both ends make barrier potentials for the
longitudinal confinement.
The 132Xe ions were trapped in the SCRIT for 240 ms,

then ejected to refresh the target quality, although the
confinement lifetime for target ions is typically 2–3 s. The
ejection was implemented by controlling one of the gate
potentials on the SCRIT device. Ejection reduces the
contribution of residual gas which becomes ionized and
trapped by the electron beam, and, hence, accumulates
over time. To estimate the background (contributed mainly
by the residual gases), the injection-trapping-ejection
sequence was alternately repeated with and without the
target ions at 10-ms intervals. The number of 132Xe ions
introduced to the SCRIT with each cycle was less than a
few times 108, which was measured by a Faraday cup just
before the SCRIT on the ion transport line.
The WiSES spectrometer consists of a dipole magnet,

drift chambers at the entrance and exit of the magnet, two
scintillation counters for trigger generation, and a helium-
gas-filled bag constructed of 30-μm-thick vinyl. The bag
is installed between the two drift chambers to reduce the
multiple-scattering effect. The spectrometer magnet is a
window-frame dipole magnet with a large aperture. Its
dimensions are 29 cm (height), 171 cm (width), 140 cm
(depth), and its magnetic field is uniform except at the
inlet and outlet. The trajectories of the scattered electrons
are reconstructed using a three-dimensional field map
calculated by a finite element method (TOSCA [16]). The
calculated map was confirmed to well reproduce the
vertical component of the magnetic field measured with

a Hall probe. During measurements, the magnitude of the
magnetic field was monitored by a NMR probe positioned
in the homogeneous field region. The solid angle of the
spectrometer is approximately 80 msr, covering scattering
angles from 30° to 60°. For the fixed position and opening
angle of the WiSES, the electron beam energy (Ee) was
varied as 151, 201, and 301 MeV, covering the momentum
transfer region 0.4–1.5 fm−1. The magnetic field of WiSES
was adjusted to 0.41, 0.54, and 0.80 T, correspondingly,
and the momentum resolutions (δp=p) evaluated in the
simulation were 3.7 × 10−3, 2.8 × 10−3, and 2.0 × 10−3,
respectively. At the beginning of the measurement, the
accumulated electron beam current was typically 250 mA.
The beam had interacted with target ions and residual gases
in the storage ring, which reduced its current to 150 mA
at the end of the data taking. A typical beam size was
2 mmH × 1 mmV (σ) at the center of the SCRIT.
Figures 2(a)–2(c) show reconstructed vertex distribu-

tions along the beam and at vertical positions after
removing the low-energy background at Ee ¼ 151 MeV.
Target ions were clearly trapped along the beam line
between the top and bottom electrodes of the SCRIT put
at "20 mm in the vertical positions. Since the barrier
potentials are leaky, the effective longitudinal trapping
region was shorter than the electrodes (40 cm versus
50 cm). The depletion at the center of Fig. 2(a) was formed
because highly ionized ions were localized at two shallow
potential minimums due to the gap at the center of the
SCRIT. The width of the vertical distribution was 6.3 mm
(σ), consistent with the vertical position resolution evalu-
ated by using the wire target. The shaded histograms in
Figs. 2(a) and 2(c) are the background contributions from
residual gases measured in the absence of target ions. These
contributions were approximately estimated as 10%, 30%,

FIG. 1. Overview of the SCRIT electron scattering facility.
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and 40% for Ee ¼ 151, 201, and 301 MeV, respectively.
Assuming 16O as the residual gas, the approximate back-
ground luminosity was estimated as 1 × 1027 cm−2 s−1,
roughly consistent with the estimation from vacuum
pressure (∼5 × 10−8 Pa around the SCRIT region).
Figure 3 shows the reconstructed momentum spectra at

Ee ¼ 151, 201, and 301 MeV, obtained after subtracting
the background. Elastic events clearly manifest as peaks
in the spectra. The measured δp=p were ∼5.4 × 10−3,
3.7 × 10−3, and 3.0 × 10−3, respectively. The present
momentum resolutions are slightly below the design values.
Possible reasons for this discrepancy are the imperfection
of knowledge in the magnetic field of the spectrometer, a
small amount of air contamination in the helium bag, and
the energy spread of the electrons circulating in the SR2.
As shown in the figure, the low-energy tails below the
elastic peak at Ee ¼ 151 and 201 MeV were well repro-
duced by simulations of a well-known radiative process

[17]. At Ee ¼ 301 MeV, the enhanced tail suggests some
inelastic processes. In the high-momentum transfer region
(0.9–1.4 fm−1), the magnitude of elastic scattering dimin-
ishes and inelastic scattering processes (such as the giant
dipole resonance) gain prominence.
Figure 4 shows differential cross sections of 132Xe

multiplied by luminosity, as functions of effective momen-
tum transfer (qeff ) for Ee ¼ 151, 201 and 301 MeV.
The qeff , which accounts for the Coulombic attraction
between electrons and nuclei, is defined as qeff ¼ q½1þ
3
2 ðZα=EiRÞ&; R ¼ 1.2 × A1=3 fm [18]. In this expression, q
is the momentum transfer calculated from the measured
angle as q ¼ 2Ei sinðθ=2Þ, Ei is the initial electron energy,
and θ is the polar angle of the scattered electrons. Z and A
are the atomic and mass numbers of the nucleus, respec-
tively, and α is the fine structure constant. The systematic
error in the cross section, introduced by ambiguity in
the spectrometer acceptance, was estimated as approxi-
mately 5%.
The lines in Fig. 4 are the elastic scattering cross

sections calculated by a phase shift calculation code
DREPHA [21] with a nuclear charge density distribution.
The solid line assumes a two-parameter Fermi distribution:
ρðrÞ ¼ ρ0=f1þ exp ½4 ln 3ðr − cÞ=t&g, where ρ0 is the
density at the center of the nucleus and c and t are surface
distribution parameters. In the present analysis, the lumi-
nosity at each energy was considered as a fitting parameter.
Determination of the absolute luminosity by LMon is
currently under way as explained before. The luminosities
evaluated by fitting the two-parameter Fermi distribution
were 0.87 × 1027, 1.06 × 1027, and 1.55 × 1027 cm−2 s−1

for Ee ¼ 151, 201, and 301 MeV, respectively, in which
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FIG. 2. Reconstructed vertex distributions of the 132Xe target at
Ee ¼ 151 MeV. The low-energy background is rejected by the
momentum selection. The top and bottom of the SCRIT electro-
des are placed at '20 mm in vertical position. Panels (a) and (c)
show the vertex point distributions with and without the target
ions (plain and hatched histograms, respectively). Panel (b) is the
scatter plot of the vertex point distribution with the target ions.
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FIG. 3. Reconstructed momentum spectra of 132Xe target
after background subtraction. Red shaded lines are the simulated
radiation tails following the elastic peaks.
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FIG. 4. Differential cross sections multiplied by luminosity
versus effective momentum transfer for Ee ¼ 151 MeV (black
filled circles), 201 MeV (open circles), and 301 MeV (filled
triangles). The lines are the results of DREPHA calculations
assuming nuclear charge density distributions obtained by the
two-parameter Fermi distribution (black solid line), the Hartree-
Fock + phenomenological calculation (red dashed line) [19], and
the beyond-relativistic-mean-field theory (blue dotted line) [20].
The parameters of the two-parameter Fermi distribution are best
values evaluated from Fig. 5.
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and 40% for Ee ¼ 151, 201, and 301 MeV, respectively.
Assuming 16O as the residual gas, the approximate back-
ground luminosity was estimated as 1 × 1027 cm−2 s−1,
roughly consistent with the estimation from vacuum
pressure (∼5 × 10−8 Pa around the SCRIT region).
Figure 3 shows the reconstructed momentum spectra at

Ee ¼ 151, 201, and 301 MeV, obtained after subtracting
the background. Elastic events clearly manifest as peaks
in the spectra. The measured δp=p were ∼5.4 × 10−3,
3.7 × 10−3, and 3.0 × 10−3, respectively. The present
momentum resolutions are slightly below the design values.
Possible reasons for this discrepancy are the imperfection
of knowledge in the magnetic field of the spectrometer, a
small amount of air contamination in the helium bag, and
the energy spread of the electrons circulating in the SR2.
As shown in the figure, the low-energy tails below the
elastic peak at Ee ¼ 151 and 201 MeV were well repro-
duced by simulations of a well-known radiative process

[17]. At Ee ¼ 301 MeV, the enhanced tail suggests some
inelastic processes. In the high-momentum transfer region
(0.9–1.4 fm−1), the magnitude of elastic scattering dimin-
ishes and inelastic scattering processes (such as the giant
dipole resonance) gain prominence.
Figure 4 shows differential cross sections of 132Xe

multiplied by luminosity, as functions of effective momen-
tum transfer (qeff ) for Ee ¼ 151, 201 and 301 MeV.
The qeff , which accounts for the Coulombic attraction
between electrons and nuclei, is defined as qeff ¼ q½1þ
3
2 ðZα=EiRÞ&; R ¼ 1.2 × A1=3 fm [18]. In this expression, q
is the momentum transfer calculated from the measured
angle as q ¼ 2Ei sinðθ=2Þ, Ei is the initial electron energy,
and θ is the polar angle of the scattered electrons. Z and A
are the atomic and mass numbers of the nucleus, respec-
tively, and α is the fine structure constant. The systematic
error in the cross section, introduced by ambiguity in
the spectrometer acceptance, was estimated as approxi-
mately 5%.
The lines in Fig. 4 are the elastic scattering cross

sections calculated by a phase shift calculation code
DREPHA [21] with a nuclear charge density distribution.
The solid line assumes a two-parameter Fermi distribution:
ρðrÞ ¼ ρ0=f1þ exp ½4 ln 3ðr − cÞ=t&g, where ρ0 is the
density at the center of the nucleus and c and t are surface
distribution parameters. In the present analysis, the lumi-
nosity at each energy was considered as a fitting parameter.
Determination of the absolute luminosity by LMon is
currently under way as explained before. The luminosities
evaluated by fitting the two-parameter Fermi distribution
were 0.87 × 1027, 1.06 × 1027, and 1.55 × 1027 cm−2 s−1
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The parameters of the two-parameter Fermi distribution are best
values evaluated from Fig. 5.
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First ever measurement of charge radii through 
electron scattering with and ion trap setting that can
be used on radioactive isotopes !!

K. Tsukada et al., Phy rev Lett 118, 262501 (2017)

P. Arthuis, CB, M. Vorabbi, P. Finelli,
Phys. Rev. Lett. 125, 182501 (2020)
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Charge density for Sn and Xe isotopes

Gorkov ADC(2)  and Dyson ADC(3)   with  N3LO-lnl and NNLOsat Hamiltonians

P. Arthuis, CB, M. Vorabbi, P. Finelli, Phys. Rev. Lett. 125, 182501 (2020)

considered. Among the nuclei studied in this Letter, only
100Sn and 132Sn are doubly magic and can be computed at
the ADC(3) truncation level. Our investigations show that,
as observed previously on lighter nuclei [8,36,56], the
difference between the ADC(2) and ADC(3) values for the
charge radius (and similarly for the charge density dis-
tribution) is very small, such that it is basically converged at
the ADC(2) level. As such, we do not discuss differences
between ADC(2) and ADC(3) results any further in this
Letter. In the following, we will hence represent our results
as a band obtained for frequencies from 10 to 14 MeV at
Nmax ¼ 13 and from 12 to 14 MeV at Nmax ¼ 11 for
E3max ¼ 16.
From this procedure, the charge radius of 132Xe is

estimated to be 4.824" 0.124 fm, which agrees with the
value recently extracted from the SCRIT experiment of
hr2i1=2 ¼ 4.79þ0.11

−0.08 fm [10]. For comparison, the calcula-
tions have been reproduced using the newly
proposed NN þ 3NðlnlÞ interaction [36], which is known
to have good convergence properties with respect to the
model space size and to give results similar to the very
successful 1.8=2.0ðEMÞ interaction [33]. In contrast to
NNLOsat, the charge radius obtained for 132Xe is
4.070" 0.045 fm, largely underestimating the experi-
mental value consistently with studies on lighter nuclei
[36]. Despite this failure at reproducing the experimental
value of the charge radius, one notices that values obtained
from NN þ 3NðlnlÞ converge better than for NNLOsat, as
expected from the softness of NN þ 3NðlnlÞ. This relative
hardness of NNLOsat, tied to the nonlocal cutoff on the
three-body terms, has been shown to play an important role
for saturation properties of nuclear matter [57] and thus
helps for a good reproduction of both energies and radii, in
contrast to NN þ 3NðlnlÞ.
In addition to the sole charge radius, another quantity

that can be computed from SCGF calculations is the charge
density distribution. In the case of 132Xe, the SCRIT group
extracted the constants c and t for a two-parameter Fermi
charge distribution ρðrÞ ¼ ρ0=f1þ exp½4 ln 3ðr − cÞ=t'g.
Figure 2 displays this two-point Fermi distribution as a
dotted line with a gray band representing the error bars,
while the green band represents our SCGF calculations. It
can be observed that while the SCGF calculations agree
with the two-point Fermi distribution at the surface of the
nucleus, though slightly overpredicting the charge radius,
we obtain an oscillating behavior for the density inside the
nucleus that cannot be reproduced with only a two-
point Fermi distribution. Extracting a three-point Fermi
distribution from the experiment would require an increase
in its luminosity such that possible discrepancies
between theory and experiment cannot be discussed any
further here.
To better gauge the discrepancies between the theoretical

and experimental bands in Fig. 2, we compare the
computed electron scattering cross sections directly to

SCRIT data. Figure 3 displays the differential cross
sections multiplied by the luminosity as a function of
the effective momentum transfer for the three experimental
electron beam energies of Ee ¼ 151 MeV, 201 MeV, and

FIG. 2. Charge density distribution for 132Xe obtained from
Gorkov SCGF calculations at ADC(2). The dotted line with gray
band corresponds to the two-point Fermi distribution with
parameter and error bars extracted from Ref. [10].

FIG. 3. Luminosity multiplied by the differential cross section
for 132Xe obtained from Gorkov SCGF calculations at ADC(2).
The values for the NN þ 3NðlnlÞ interaction have been scaled by
102 for clarity. The gray bands correspond to the two-point Fermi
distribution with parameter and error bars extracted from
Ref. [10]. Experimental values are taken from [10] and duplicated
with a scaling of 102 for comparison with NN þ 3NðlnlÞ values,
where error bars have been removed for clarity.

PHYSICAL REVIEW LETTERS 125, 182501 (2020)

182501-3

SCRIT data 
(RIKEN)



MILANO

Nuclear Density Functional Theory

Machine-learn DFT functional 
on the nuclar equation of state

DFT is in principle exact – but the energy density functional (EDF) is not known

For nuclear physics this is even more demanding: need to link the EDF to theories rooted in QCD!

Benchmark in finite systems
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We discuss the construction of a nuclear energy density functional (EDF) from ab initio computations and
advocate the need for a methodical approach that is free from ad hoc assumptions. The equations of state (EoSs)
of symmetric nuclear and pure neutron matter are computed using the chiral NNLOsat and the phenomenological
AV4′ + UIXc Hamiltonians as inputs to self-consistent Green’s function (SCGF) and auxiliary field diffusion
Monte Carlo (AFDMC) methods. We propose a convenient parametrization of the EoS as a function of the
Fermi momentum and fit it on the SCGF and AFDMC calculations. We apply the ab initio based EDF to carry
out an analysis of the binding energies and charge radii of different nuclei in the local density approximation.
The NNLOsat-based EDF produces encouraging results, whereas the AV4′ + UIXc-based one is farther from
experiment. Possible explanations of these different behaviors are suggested, and the importance of gradient and
spin-orbit terms is analyzed. Our paper paves the way for a practical and systematic way to merge ab initio
nuclear theory and density functional theory, while shedding light on some critical aspects of this procedure.

DOI: 10.1103/PhysRevC.104.024315

I. INTRODUCTION

The need to tackle the very complex nuclear many-body
problem has inspired dramatic advances in the so-called
ab initio methods in recent years [1–3]. These approaches
aim at solving the many-nucleon Schrödinger equation in
an exact or systematically improvable way by using a re-
alistic model for the nuclear interaction in the vacuum.
Examples of these approaches are the Green’s function
Monte Carlo (GFMC) and auxiliary field diffusion Monte
Carlo (AFDMC) [4–6], self-consistent Green’s function
(SCGF) [7–10], coupled-cluster [2,11,12], in-medium similar-
ity renormalization group [3,13], and many-body perturbation
theory methods [14,15]. Successful nuclear structure cal-
culations have been performed for low- and medium-mass
nuclei [1,3,4,16], as well as in infinite nuclear matter [9,17,18]
and neutron stars [19,20]. Although ab initio theory can now
approach masses of A ≈ 140 [21], its predictive power is
affected by the large computational cost and full-scale studies
of heavy nuclei are still out of reach.

In the heavy-mass region of the nuclear chart, the method
of choice is density functional theory (DFT). Originally intro-
duced in condensed matter, DFT is a hugely popular method
that finds application in several areas of physics, ranging from
quantum chemistry [22–25] to nuclear physics [26–31]. In the

*francesco.marino@unimi.it

latter case, it represents the only approach that allows one
to cover almost the whole nuclear chart [26,27,30], with the
partial exception of very light nuclei, and to study both ground
states (g.s.) and, in its time-dependent formulation, excited
states [29]. In principle, DFT provides an exact formulation
of the many-body problem based on the Hohenberg-Kohn
theorems [22,30,32], which state that all observables, starting
from the total energy, can be expressed in a unique way as a
functional of the one-body density (including spin densities
and other generalized densities [33]). However, these theo-
rems give no hints about the actual form of such functional,
which is dubbed as the energy density functional (EDF).
Hence, in practice, DFT turns out to be an approximate, albeit
very powerful, method. In particular, most relativistic [34]
and nonrelativistic [26–28] nuclear EDFs are designed in an
empirical manner. A reasonable ansatz for the functional form
is chosen and its actual parameters are fitted on experimen-
tal observables such as radii and masses of finite nuclei, or
pseudo-observables such as the saturation density of symmet-
ric nuclear matter [27,35]. The available EDFs are overall
successful [26,30], e.g., the experimental binding energies
are reproduced on average within 1–2 MeV and charge radii
within 0.01–0.02 fm. However, it is unclear how to further
improve the performance of traditional EDFs [36]. Despite
attempts to frame DFT as an effective field theory (EFT),
we still lack guiding principles for the systematic improve-
ment of nuclear EDFs [37]. Existing EDFs are affected by
uncontrolled extrapolation errors when applied to systems for

2469-9985/2021/104(2)/024315(14) 024315-1 ©2021 American Physical Society
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of symmetric nuclear and pure neutron matter are computed using the chiral NNLOsat and the phenomenological
AV4′ + UIXc Hamiltonians as inputs to self-consistent Green’s function (SCGF) and auxiliary field diffusion
Monte Carlo (AFDMC) methods. We propose a convenient parametrization of the EoS as a function of the
Fermi momentum and fit it on the SCGF and AFDMC calculations. We apply the ab initio based EDF to carry
out an analysis of the binding energies and charge radii of different nuclei in the local density approximation.
The NNLOsat-based EDF produces encouraging results, whereas the AV4′ + UIXc-based one is farther from
experiment. Possible explanations of these different behaviors are suggested, and the importance of gradient and
spin-orbit terms is analyzed. Our paper paves the way for a practical and systematic way to merge ab initio
nuclear theory and density functional theory, while shedding light on some critical aspects of this procedure.

DOI: 10.1103/PhysRevC.104.024315

I. INTRODUCTION

The need to tackle the very complex nuclear many-body
problem has inspired dramatic advances in the so-called
ab initio methods in recent years [1–3]. These approaches
aim at solving the many-nucleon Schrödinger equation in
an exact or systematically improvable way by using a re-
alistic model for the nuclear interaction in the vacuum.
Examples of these approaches are the Green’s function
Monte Carlo (GFMC) and auxiliary field diffusion Monte
Carlo (AFDMC) [4–6], self-consistent Green’s function
(SCGF) [7–10], coupled-cluster [2,11,12], in-medium similar-
ity renormalization group [3,13], and many-body perturbation
theory methods [14,15]. Successful nuclear structure cal-
culations have been performed for low- and medium-mass
nuclei [1,3,4,16], as well as in infinite nuclear matter [9,17,18]
and neutron stars [19,20]. Although ab initio theory can now
approach masses of A ≈ 140 [21], its predictive power is
affected by the large computational cost and full-scale studies
of heavy nuclei are still out of reach.

In the heavy-mass region of the nuclear chart, the method
of choice is density functional theory (DFT). Originally intro-
duced in condensed matter, DFT is a hugely popular method
that finds application in several areas of physics, ranging from
quantum chemistry [22–25] to nuclear physics [26–31]. In the

*francesco.marino@unimi.it

latter case, it represents the only approach that allows one
to cover almost the whole nuclear chart [26,27,30], with the
partial exception of very light nuclei, and to study both ground
states (g.s.) and, in its time-dependent formulation, excited
states [29]. In principle, DFT provides an exact formulation
of the many-body problem based on the Hohenberg-Kohn
theorems [22,30,32], which state that all observables, starting
from the total energy, can be expressed in a unique way as a
functional of the one-body density (including spin densities
and other generalized densities [33]). However, these theo-
rems give no hints about the actual form of such functional,
which is dubbed as the energy density functional (EDF).
Hence, in practice, DFT turns out to be an approximate, albeit
very powerful, method. In particular, most relativistic [34]
and nonrelativistic [26–28] nuclear EDFs are designed in an
empirical manner. A reasonable ansatz for the functional form
is chosen and its actual parameters are fitted on experimen-
tal observables such as radii and masses of finite nuclei, or
pseudo-observables such as the saturation density of symmet-
ric nuclear matter [27,35]. The available EDFs are overall
successful [26,30], e.g., the experimental binding energies
are reproduced on average within 1–2 MeV and charge radii
within 0.01–0.02 fm. However, it is unclear how to further
improve the performance of traditional EDFs [36]. Despite
attempts to frame DFT as an effective field theory (EFT),
we still lack guiding principles for the systematic improve-
ment of nuclear EDFs [37]. Existing EDFs are affected by
uncontrolled extrapolation errors when applied to systems for
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where ↵ and � label the single particle quantum numbers
and ⌃(1) is the correlated and energy independent mean
field.

We perform calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrices M (N) couple single particle states to interme-
diate 2p1h (2h1p) configurations, C (D) are interaction
matrices among these configurations and K are their un-
perturbed energies [29, 30]. The Hamiltonian used to
generate the self energy is

H(A) = T � Tc.m.(A) + V + W (2)

where Tc.m.(A) is the kinetic energy center of mass for
A particle, V and W are the two and three body in-
teractions. In the case of SRG-N3LO EM500 potential
[31] only the two body interaction has been used. For
NNLOsat [26], we apply the reduction of the three body
interaction to an equivalent e↵ective two–body, consid-
ering the normal ordering contribution, as demonstrated
in [25].

The resulting dressed single particle propagator can be
written in the Lehmann representation as
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the poles of the propagator E
A+1
n �E

A
0 indicate then the

energy of the n–th exited state in the A+1 system respect
to the ground state of the A system. To be noted that
there is an ambiguity in this solution, our Hamiltonian
has been explicitly corrected for center of mass of A par-
ticles and the propagator contains excited states of the
A + 1 system. The center of mass separation is not triv-
ial in truncated many–body spaces, such as the SCGF or
CC. For this reason both hpsi| and |psii in the definition
of the self energy and optical potential are not eigenstates
of the total momentum. This carries an intrinsic uncer-
tainint in center of mass definition, that however is under
control in the systems in considerations (cf. Fig. 1).

To be noted that the parameter i⌘ enter in our cal-
culation only in the construction of the optical potential
spectral representation, and plays no role in the iterative
solution of the many-body problem, that comes from the
diagonalization of the equation of motion [9, 20, 30]. For

the calculation here shown put the i⌘ parameter as en-
ergy dependent 0.002MeV✏2/⇡(✏2 � (22.36MeV)2) where
✏ = ! � EF , with EF the Fermi energy, checking the
convergence of the observables under consideration. All
intermediate states in the selected space n, i must be con-
sidered in the calculation, for the basis states to be com-
plete, in the case of Nmax = 13 this corresponds to con-
sidering all excitations up to J = 25 and to 400 MeV of
excitation energy.
The optical potential for a given partial wave (l, j) is

expressed in momentum space from the harmonic oscilla-
tor space using the fn,l(k) harmonic oscillator wavefunc-
tions,
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which is non local and energy–dependent. Hence, at
variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
tical potential within the Lehmann representation.
We solve the corresponding scattering problem in the

full one-body space, embedding the ADC(3) self energy
calculated in the discreet harmonic oscillator basis, in
the continuum. We diagonalize the Schrödinger equation
in momentum space using the appropriate reduced mass
µ = A/(A + 1)m,
✓
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(5)
so that, the kinetic energy is treated exactly, without
truncations. Ec.m. is the reaction energy in the center of
mass frame. We fully account for the non locality and
l, j dependence of Eq. (4). For each partial wave and
parity, the phase shifts �(E) are obtained as function of
the projectile energy, from where the di↵erential cross
section are calculated.

RESULTS

We start by comparing in Fig. 1 results for phase
shifts of neutrons scattering o↵ 16O, calculated with
NCSM/RGM and SCGF. These calculations [15] were
carried out using SRG-N3LO EM500 potential evolved
with � = 2.66fm

1 [31]. This proof of principle calcula-
tion shows a good comparison between the two methods,
testifying to the validity of SCGF approach and the cen-
ter of mass correction. To exclude couplings with excita-
tions, only the static part of the self energy ⌃1 has been
included in this comparison. As noted in [15], phase shifts
calculation are well converged within this model space as
can be seen in Fig. 2 for d3/2 and s1/2.
In Fig. 3 we show the result for the calculation for both

in NCSM/RGM, including the coupling with 3�, 2�, 1�

low lying states of 16O (the technical limit of 2010 [15]),
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investigate properties of the NNLOsat Hamiltonian com-
paring with neutron elastic scattering experimental cross
sections in 16O and 40Ca nuclei.
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H(A) = T � Tc.m.(A+ 1) + V +W (1)

where Tc.m.(A + 1) is the kinetic energy center of mass
for a system of A nucleons plus 1 projectile, V and W

are the two and three body interactions. We verified
that applying the reduction of Tc.m.(A) instead has less
then 2% e↵ect in the propagator energies and resulting
phase shifts. When also the 3 body termW is considered,
we apply the reduction of the three body interaction to
an equivalent e↵ective two–body, considering the normal
ordering contribution, as demonstrated in [25].

The SCGF calculation is then performed by iterating
the Dyson equation g(!) = g
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0(!)⌃?(!)g(!) in

the harmonic oscillator basis of Nmax+1 oscillator shells.
g
0(!) is the free particle propagator, and ⌃?(!) the irre-
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where ↵ and � label the single particle quantum numbers
and ⌃(1) is the correlated and energy independent mean
field.

We perform calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrices M (N) couple single particle states to interme-
diate 2p1h (2h1p) configurations, C (D) are interaction
matrices among these configurations and K are their un-
perturbed energies [29, 30]. All intermediate particle–
hole states in the selected space n, k must be considered
in the calculation, for the basis states to be complete, in
the case of Nmax = 13 this corresponds to considering all
excitations up to J = 29 of both parities and to about
400 MeV of excitation energy.

The resulting dressed single particle propagator can be
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the poles of the propagator EA+1
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A
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energy of the n–th exited state in the A+1 system respect
to the ground state of the A system. To be noted that
there is an ambiguity in this solution, our Hamiltonian
has been explicitly corrected for center of mass of A +
1 particles and the propagator contains both | Ai and
| A+1i.
The center of mass separation is not guaranteed in

spherical harmonic oscillator basis, which breaks transla-
tional invariance, when a truncation is being employed.
It is numerically verified only for Nmax

>⇠ 19 [31]. For
this reason both h | and | i in the definition of the self
energy and optical potential are not eigenstates of the to-
tal momentum. This carries an intrinsic uncertaininty in
center of mass definition, that however can be checked by
benchmarking with full Nh̄!–space NCSM calculations
(cf. Fig. 1).
The optical potential for a given partial wave (l, j) is

expressed in momentum space from the harmonic oscilla-
tor space using the fn,l(k) harmonic oscillator wavefunc-
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which is non local and energy–dependent. Hence, at
variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
tical potential within the Lehmann representation.
To be noted that the parameter i� enters in our cal-

culation only in the construction of the optical potential
spectral representation of Eq. 4, and plays no role in
the iterative solution of the many-body problem, that
comes from the diagonalization of the equation of mo-
tion [5, 20, 30]. For the calculation here shown put the
i� parameter as energy dependent 0.002MeV✏2/⇡(✏2 �
(22.36MeV)2) where ✏ = E�EF , with EF the Fermi en-
ergy, checking the convergence of the observables under
consideration.
We solve the corresponding scattering problem in the

full one-body space, embedding in the continuum the
ADC(3) self energy calculated in the harmonic oscilla-
tor basis using Eq. 4. We diagonalize the Schrödinger–
like equation in momentum space using the appropriate
reduced mass µ = A/(A+ 1)m,
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so that, the kinetic energy is treated exactly, without
truncations. The solution eigenvalue E is the reaction
energy in the center of mass frame, and the eigenfunction
 l,j(k) is the resulting overlap (or scattering) wavefunc-
tion h A+1

n |cn| A
0 i. We fully account for the non locality

and l, j dependence of Eq. (4). For each partial wave and
parity, the phase shifts �(E) are obtained as function of
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where ↵ and � label the single particle quantum numbers
and ⌃(1) is the correlated and energy independent mean
field.

We perform calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrices M (N) couple single particle states to interme-
diate 2p1h (2h1p) configurations, C (D) are interaction
matrices among these configurations and K are their un-
perturbed energies [29, 30]. All intermediate particle–
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variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
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MILANO

Microscopic optical potential
Nuclear self-energy                  :
• contains both particle and hole props.
• it is proven to be a Feshbach opt. pot à in general it is non-local !

Solve scattering and overlap functions directly in momentum space:

2

tral representation,
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where ↵ and � label the single particle quantum numbers
and ⌃(1) is the correlated and energy independent mean
field.

We perform calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrices M (N) couple single particle states to interme-
diate 2p1h (2h1p) configurations, C (D) are interaction
matrices among these configurations and K are their un-
perturbed energies [29, 30]. The Hamiltonian used to
generate the self energy is

H(A) = T � Tc.m.(A) + V + W (2)

where Tc.m.(A) is the kinetic energy center of mass for
A particle, V and W are the two and three body in-
teractions. In the case of SRG-N3LO EM500 potential
[31] only the two body interaction has been used. For
NNLOsat [26], we apply the reduction of the three body
interaction to an equivalent e↵ective two–body, consid-
ering the normal ordering contribution, as demonstrated
in [25].

The resulting dressed single particle propagator can be
written in the Lehmann representation as

g↵,�(!) =
X

n

h A
0 |c↵| A+1

n ih A+1
n |c†� | A

0 i
! � E

A+1
n + E

A
0 + i⌘

+
X

i

h A
0 |c†↵| A�1

n ih A�1
n |c� | A

0 i
! � E

A
0 + E

A�1
i � i⌘

, (3)

the poles of the propagator E
A+1
n �E

A
0 indicate then the

energy of the n–th exited state in the A+1 system respect
to the ground state of the A system. To be noted that
there is an ambiguity in this solution, our Hamiltonian
has been explicitly corrected for center of mass of A par-
ticles and the propagator contains excited states of the
A + 1 system. The center of mass separation is not triv-
ial in truncated many–body spaces, such as the SCGF or
CC. For this reason both hpsi| and |psii in the definition
of the self energy and optical potential are not eigenstates
of the total momentum. This carries an intrinsic uncer-
tainint in center of mass definition, that however is under
control in the systems in considerations (cf. Fig. 1).

To be noted that the parameter i⌘ enter in our cal-
culation only in the construction of the optical potential
spectral representation, and plays no role in the iterative
solution of the many-body problem, that comes from the
diagonalization of the equation of motion [9, 20, 30]. For

the calculation here shown put the i⌘ parameter as en-
ergy dependent 0.002MeV✏2/⇡(✏2 � (22.36MeV)2) where
✏ = ! � EF , with EF the Fermi energy, checking the
convergence of the observables under consideration. All
intermediate states in the selected space n, i must be con-
sidered in the calculation, for the basis states to be com-
plete, in the case of Nmax = 13 this corresponds to con-
sidering all excitations up to J = 25 and to 400 MeV of
excitation energy.
The optical potential for a given partial wave (l, j) is

expressed in momentum space from the harmonic oscilla-
tor space using the fn,l(k) harmonic oscillator wavefunc-
tions,

⌃? l,j(k, k
0;E) =

X

n,n0

fn,l(k)⌃
? l,j
n,n0(E) fn0,l(k

0) , (4)

which is non local and energy–dependent. Hence, at
variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
tical potential within the Lehmann representation.
We solve the corresponding scattering problem in the

full one-body space, embedding the ADC(3) self energy
calculated in the discreet harmonic oscillator basis, in
the continuum. We diagonalize the Schrödinger equation
in momentum space using the appropriate reduced mass
µ = A/(A + 1)m,
✓

k
2

2µ
� Ec.m. +

Z
dk

0
k
02⌃? l,j(k, k

0;E)

◆
 l,j(k) = E l,j(k),

(5)
so that, the kinetic energy is treated exactly, without
truncations. Ec.m. is the reaction energy in the center of
mass frame. We fully account for the non locality and
l, j dependence of Eq. (4). For each partial wave and
parity, the phase shifts �(E) are obtained as function of
the projectile energy, from where the di↵erential cross
section are calculated.

RESULTS

We start by comparing in Fig. 1 results for phase
shifts of neutrons scattering o↵ 16O, calculated with
NCSM/RGM and SCGF. These calculations [15] were
carried out using SRG-N3LO EM500 potential evolved
with � = 2.66fm

1 [31]. This proof of principle calcula-
tion shows a good comparison between the two methods,
testifying to the validity of SCGF approach and the cen-
ter of mass correction. To exclude couplings with excita-
tions, only the static part of the self energy ⌃1 has been
included in this comparison. As noted in [15], phase shifts
calculation are well converged within this model space as
can be seen in Fig. 2 for d3/2 and s1/2.
In Fig. 3 we show the result for the calculation for both

in NCSM/RGM, including the coupling with 3�, 2�, 1�

low lying states of 16O (the technical limit of 2010 [15]),

2

investigate properties of the NNLOsat Hamiltonian com-
paring with neutron elastic scattering experimental cross
sections in 16O and 40Ca nuclei.

THE MICROSCOPIC OPTICAL POTENTIAL

The Hamiltonian used to generate the self energy is

H(A) = T � Tc.m.(A+ 1) + V +W (1)

where Tc.m.(A + 1) is the kinetic energy center of mass
for a system of A nucleons plus 1 projectile, V and W

are the two and three body interactions. We verified
that applying the reduction of Tc.m.(A) instead has less
then 2% e↵ect in the propagator energies and resulting
phase shifts. When also the 3 body termW is considered,
we apply the reduction of the three body interaction to
an equivalent e↵ective two–body, considering the normal
ordering contribution, as demonstrated in [25].

The SCGF calculation is then performed by iterating
the Dyson equation g(!) = g

0(!) + g
0(!)⌃?(!)g(!) in

the harmonic oscillator basis of Nmax+1 oscillator shells.
g
0(!) is the free particle propagator, and ⌃?(!) the irre-

ducible self-energy which has the following general spec-
tral representation,
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where ↵ and � label the single particle quantum numbers
and ⌃(1) is the correlated and energy independent mean
field.

We perform calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrices M (N) couple single particle states to interme-
diate 2p1h (2h1p) configurations, C (D) are interaction
matrices among these configurations and K are their un-
perturbed energies [29, 30]. All intermediate particle–
hole states in the selected space n, k must be considered
in the calculation, for the basis states to be complete, in
the case of Nmax = 13 this corresponds to considering all
excitations up to J = 29 of both parities and to about
400 MeV of excitation energy.

The resulting dressed single particle propagator can be
written in the Lehmann representation as

g↵,�(E,�) =
X

n

h A
0 |c↵| A+1

n ih A+1
n |c†� | A
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the poles of the propagator EA+1
n �E

A
0 indicate then the

energy of the n–th exited state in the A+1 system respect
to the ground state of the A system. To be noted that
there is an ambiguity in this solution, our Hamiltonian
has been explicitly corrected for center of mass of A +
1 particles and the propagator contains both | Ai and
| A+1i.
The center of mass separation is not guaranteed in

spherical harmonic oscillator basis, which breaks transla-
tional invariance, when a truncation is being employed.
It is numerically verified only for Nmax

>⇠ 19 [31]. For
this reason both h | and | i in the definition of the self
energy and optical potential are not eigenstates of the to-
tal momentum. This carries an intrinsic uncertaininty in
center of mass definition, that however can be checked by
benchmarking with full Nh̄!–space NCSM calculations
(cf. Fig. 1).
The optical potential for a given partial wave (l, j) is

expressed in momentum space from the harmonic oscilla-
tor space using the fn,l(k) harmonic oscillator wavefunc-
tions,

⌃? l,j(k, k0;E,�) =
X

n,n0

fn,l(k)⌃
? l,j
n,n0(E,�) fn0,l(k

0) , (4)

which is non local and energy–dependent. Hence, at
variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
tical potential within the Lehmann representation.
To be noted that the parameter i� enters in our cal-

culation only in the construction of the optical potential
spectral representation of Eq. 4, and plays no role in
the iterative solution of the many-body problem, that
comes from the diagonalization of the equation of mo-
tion [5, 20, 30]. For the calculation here shown put the
i� parameter as energy dependent 0.002MeV✏2/⇡(✏2 �
(22.36MeV)2) where ✏ = E�EF , with EF the Fermi en-
ergy, checking the convergence of the observables under
consideration.
We solve the corresponding scattering problem in the

full one-body space, embedding in the continuum the
ADC(3) self energy calculated in the harmonic oscilla-
tor basis using Eq. 4. We diagonalize the Schrödinger–
like equation in momentum space using the appropriate
reduced mass µ = A/(A+ 1)m,

✓
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2µ
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Z
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0) = 0,

(5)
so that, the kinetic energy is treated exactly, without
truncations. The solution eigenvalue E is the reaction
energy in the center of mass frame, and the eigenfunction
 l,j(k) is the resulting overlap (or scattering) wavefunc-
tion h A+1

n |cn| A
0 i. We fully account for the non locality

and l, j dependence of Eq. (4). For each partial wave and
parity, the phase shifts �(E) are obtained as function of
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paring with neutron elastic scattering experimental cross
sections in 16O and 40Ca nuclei.
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where Tc.m.(A + 1) is the kinetic energy center of mass
for a system of A nucleons plus 1 projectile, V and W

are the two and three body interactions. We verified
that applying the reduction of Tc.m.(A) instead has less
then 2% e↵ect in the propagator energies and resulting
phase shifts. When also the 3 body termW is considered,
we apply the reduction of the three body interaction to
an equivalent e↵ective two–body, considering the normal
ordering contribution, as demonstrated in [25].

The SCGF calculation is then performed by iterating
the Dyson equation g(!) = g
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where ↵ and � label the single particle quantum numbers
and ⌃(1) is the correlated and energy independent mean
field.

We perform calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrices M (N) couple single particle states to interme-
diate 2p1h (2h1p) configurations, C (D) are interaction
matrices among these configurations and K are their un-
perturbed energies [29, 30]. All intermediate particle–
hole states in the selected space n, k must be considered
in the calculation, for the basis states to be complete, in
the case of Nmax = 13 this corresponds to considering all
excitations up to J = 29 of both parities and to about
400 MeV of excitation energy.

The resulting dressed single particle propagator can be
written in the Lehmann representation as
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the poles of the propagator EA+1
n �E

A
0 indicate then the

energy of the n–th exited state in the A+1 system respect
to the ground state of the A system. To be noted that
there is an ambiguity in this solution, our Hamiltonian
has been explicitly corrected for center of mass of A +
1 particles and the propagator contains both | Ai and
| A+1i.
The center of mass separation is not guaranteed in

spherical harmonic oscillator basis, which breaks transla-
tional invariance, when a truncation is being employed.
It is numerically verified only for Nmax

>⇠ 19 [31]. For
this reason both h | and | i in the definition of the self
energy and optical potential are not eigenstates of the to-
tal momentum. This carries an intrinsic uncertaininty in
center of mass definition, that however can be checked by
benchmarking with full Nh̄!–space NCSM calculations
(cf. Fig. 1).
The optical potential for a given partial wave (l, j) is

expressed in momentum space from the harmonic oscilla-
tor space using the fn,l(k) harmonic oscillator wavefunc-
tions,
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which is non local and energy–dependent. Hence, at
variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
tical potential within the Lehmann representation.
To be noted that the parameter i� enters in our cal-

culation only in the construction of the optical potential
spectral representation of Eq. 4, and plays no role in
the iterative solution of the many-body problem, that
comes from the diagonalization of the equation of mo-
tion [5, 20, 30]. For the calculation here shown put the
i� parameter as energy dependent 0.002MeV✏2/⇡(✏2 �
(22.36MeV)2) where ✏ = E�EF , with EF the Fermi en-
ergy, checking the convergence of the observables under
consideration.
We solve the corresponding scattering problem in the

full one-body space, embedding in the continuum the
ADC(3) self energy calculated in the harmonic oscilla-
tor basis using Eq. 4. We diagonalize the Schrödinger–
like equation in momentum space using the appropriate
reduced mass µ = A/(A+ 1)m,
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so that, the kinetic energy is treated exactly, without
truncations. The solution eigenvalue E is the reaction
energy in the center of mass frame, and the eigenfunction
 l,j(k) is the resulting overlap (or scattering) wavefunc-
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NCSM/RGM [without core excitations]

EM500:  NN-SRG !SRG= 2.66 fm-1, Nmax=18 (IT)
[PRC82, 034609 (2010)]

NNLOsat: Nmax=8 (IT-NCSM)

SCGF [Σ(∞) only],  always Nmax=13

Benchmark with NCSM-based scattering.

Scattering from mean-field only:

16O(n,n’)16O

Low energy scattering – from SCGF
[A. Idini, CB, Navratil,
Phys. Rev. Lett. 123, 092501 (2019) ]
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Benchmark with NCSM-based scattering.

Scattering from mean-field only:

16O(n,n’)16O

Low energy scattering – from SCGF

°50
0

50
100
150
200

±
(d

eg
) 1/2+

5/2+
3/2+

0
100
200
300
400

±
(d

eg
) 3/2° 1/2°

0 2 4 6 8 10 12 14 16
Ec.m. (MeV)

0
100
200
300
400
500

±
(d

eg
) 7/2° 5/2°

Full self-energy from SCGF:

4

FIG. 3. Di↵erential cross section for neutron elastic scattering
o↵ 16O ( 40Ca) at 3.286 (3.2) MeV of neutron energy, with
NNLOsat and compared to the empirical data from [44, 46].

has the advantage of including these states naturally,
even to large energies, so it describes e�ciently the rel-
evant physics. Table I compares the energies of some
representative bound and scattering states to the exper-
iment. The 3/2+ single particle resonance is computed
at 0.91 MeV in the c.o.m. frame, very close the exper-
imental value. The first 1/2� and 3/2� are both pre-
dicted as bound states, although experimentally they are
found inverted with the 3/2� in the continuum. We cal-
culate a narrow width for a 5/2� and a 7/2� resonances,
corresponding to excited states, close to the ones ob-
served at 3.02 and 3.54 MeV [44]. However, there are
other very narrow f -wave resonances, measured between
1.55-2.82 MeV, that our SCGF calculations do not re-
solve. In general, we find that NNLOsat predicts the
location of dominant quasiparticle and holes states with
an accuracy of <⇠ 1 MeV for this nucleus.

Fig. 3 compares the low-energy di↵erential cross sec-
tions originating from Eq. (5) to neutron scattering data
for 16O at 3.286 MeV and 40Ca at 3.2 MeV. The minima
are reproduced well for 16O (and close to the experiment
for 40Ca), confirming the correct prediction of density
distributions for NNLOsat [32, 34, 48]. However, results
are somewhat overestimated and hint at a general lack of
absorption that is usually faced by attempts at comput-

" (MeV) 5/2+ 1/2+ 1/2� 5/2� 3/2� 3/2+ 5/2+⇤ 5/2�⇤ 7/2�⇤
exp. -4.14 -3.27 -1.09 -0.30 0.41 0.94 3.23 3.02 3.54

NNLOsat -5.06 -3.58 -0.15 -1.23 -2.24 0.91 4.57 3.36 3.37

TABLE I. Excitation spectrum of 17O with respect to the
n+16O threshold, as obtained from Eq. (5) and the NNLOsat

interaction and compared to the experiment [45]. Broad res-
onances in the continuum (most notably, the 5/2+) are com-
puted at midpoint. The asterisks (⇤) indicate higher excited
states, above the lowest one, for each partial wave.

FIG. 4. Total elastic cross section for neutron elastic scat-
tering on 16O form SCGF-ADC(3) at di↵erent incident neu-
tron energies, compared to the experiment from [47]. The
dashed, dot-dashed and full lines correspond to the sole static
self-energy ⌃(1), to retaining 50% of the 2p1h/2h1p doorway
configurations and to the complete Eq. (2), respectively.

ing the optical potentials from ab initio. This is likely
related to missing doorway configurations (3p2h and be-
yond) that should be propagated in the denominators of
Eq. (2) but are neglected by state of the art approaches.
Note that there are more than 200 experimentally ob-
served excitations already between the ground state and
the neutron separation threshold in 41Ca [49], while the
SCGF-ADC(3) predicts only about 40 of them. This is-
sue is likely to worsen at higher energies where configura-
tions more complex than 2p1h become relevant. We in-
vestigated this problem by computing total n+16O elas-
tic cross sections, �(Ec.m.), with only ⌃(1), suppressing
50% of 2p1h/2h1p states (evenly across all energies), and
by using the complete ADC(3) self-energy. Fig. 4 shows
that �(Ec.m.) presents oscillations up to about 5 MeV.
These are in part reproduced by theory and are sensible
to interferences among the projectile and the included
2p1h configurations. However, the link between absorp-
tion and the density of intermediate doorway configura-
tions becomes clear at higher energies and it is confirmed
by our calculations [50].
To conclude, we have benchmarked optical potentials

generated through SCGF theory to analogous full scale
NCSMC simulations and to data for neutron elastic scat-
tering at low energy. For both theory approaches, the
correct asymptotic behaviour of the scattering wave are
reproduced even if the target wave function and the op-
tical potentials are expanded in a HO basis. The theory
benchmark, with freezing of virtual excitation of the tar-
get, is very encouraging. The SCGF approach also has
the capability of accounting for a large number of such
intermediate excitations up to very large energies, and
it achieves a promising description of complex resonance
states from first principles. The use of a saturating chiral
interaction allows us to make a meaningful comparison

[A. Idini, CB, Navratil,
Phys. Rev. Lett. 123, 092501 (2019) ]
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Role of intermediate state configurations (ISCs)
[A. Idini, CB, Navratil,
Phys. Rev. Lett. 123, 092501 (2019) ]
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where ↵ and � label the single particle quantum numbers
and ⌃(1) is the correlated and energy independent mean
field.

We perform calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrices M (N) couple single particle states to interme-
diate 2p1h (2h1p) configurations, C (D) are interaction
matrices among these configurations and K are their un-
perturbed energies [29, 30]. The Hamiltonian used to
generate the self energy is

H(A) = T � Tc.m.(A) + V + W (2)

where Tc.m.(A) is the kinetic energy center of mass for
A particle, V and W are the two and three body in-
teractions. In the case of SRG-N3LO EM500 potential
[31] only the two body interaction has been used. For
NNLOsat [26], we apply the reduction of the three body
interaction to an equivalent e↵ective two–body, consid-
ering the normal ordering contribution, as demonstrated
in [25].

The resulting dressed single particle propagator can be
written in the Lehmann representation as
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the poles of the propagator E
A+1
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A
0 indicate then the

energy of the n–th exited state in the A+1 system respect
to the ground state of the A system. To be noted that
there is an ambiguity in this solution, our Hamiltonian
has been explicitly corrected for center of mass of A par-
ticles and the propagator contains excited states of the
A + 1 system. The center of mass separation is not triv-
ial in truncated many–body spaces, such as the SCGF or
CC. For this reason both hpsi| and |psii in the definition
of the self energy and optical potential are not eigenstates
of the total momentum. This carries an intrinsic uncer-
tainint in center of mass definition, that however is under
control in the systems in considerations (cf. Fig. 1).

To be noted that the parameter i⌘ enter in our cal-
culation only in the construction of the optical potential
spectral representation, and plays no role in the iterative
solution of the many-body problem, that comes from the
diagonalization of the equation of motion [9, 20, 30]. For

the calculation here shown put the i⌘ parameter as en-
ergy dependent 0.002MeV✏2/⇡(✏2 � (22.36MeV)2) where
✏ = ! � EF , with EF the Fermi energy, checking the
convergence of the observables under consideration. All
intermediate states in the selected space n, i must be con-
sidered in the calculation, for the basis states to be com-
plete, in the case of Nmax = 13 this corresponds to con-
sidering all excitations up to J = 25 and to 400 MeV of
excitation energy.
The optical potential for a given partial wave (l, j) is
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which is non local and energy–dependent. Hence, at
variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
tical potential within the Lehmann representation.
We solve the corresponding scattering problem in the

full one-body space, embedding the ADC(3) self energy
calculated in the discreet harmonic oscillator basis, in
the continuum. We diagonalize the Schrödinger equation
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so that, the kinetic energy is treated exactly, without
truncations. Ec.m. is the reaction energy in the center of
mass frame. We fully account for the non locality and
l, j dependence of Eq. (4). For each partial wave and
parity, the phase shifts �(E) are obtained as function of
the projectile energy, from where the di↵erential cross
section are calculated.

RESULTS

We start by comparing in Fig. 1 results for phase
shifts of neutrons scattering o↵ 16O, calculated with
NCSM/RGM and SCGF. These calculations [15] were
carried out using SRG-N3LO EM500 potential evolved
with � = 2.66fm

1 [31]. This proof of principle calcula-
tion shows a good comparison between the two methods,
testifying to the validity of SCGF approach and the cen-
ter of mass correction. To exclude couplings with excita-
tions, only the static part of the self energy ⌃1 has been
included in this comparison. As noted in [15], phase shifts
calculation are well converged within this model space as
can be seen in Fig. 2 for d3/2 and s1/2.
In Fig. 3 we show the result for the calculation for both
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ial in truncated many–body spaces, such as the SCGF or
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tainint in center of mass definition, that however is under
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which is non local and energy–dependent. Hence, at
variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
tical potential within the Lehmann representation.
We solve the corresponding scattering problem in the
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sidering all excitations up to J = 25 and to 400 MeV of
excitation energy.
The optical potential for a given partial wave (l, j) is

expressed in momentum space from the harmonic oscilla-
tor space using the fn,l(k) harmonic oscillator wavefunc-
tions,

⌃? l,j(k, k
0;E) =

X

n,n0

fn,l(k)⌃
? l,j
n,n0(E) fn0,l(k

0) , (4)
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variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
tical potential within the Lehmann representation.
We solve the corresponding scattering problem in the

full one-body space, embedding the ADC(3) self energy
calculated in the discreet harmonic oscillator basis, in
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so that, the kinetic energy is treated exactly, without
truncations. Ec.m. is the reaction energy in the center of
mass frame. We fully account for the non locality and
l, j dependence of Eq. (4). For each partial wave and
parity, the phase shifts �(E) are obtained as function of
the projectile energy, from where the di↵erential cross
section are calculated.
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ter of mass correction. To exclude couplings with excita-
tions, only the static part of the self energy ⌃1 has been
included in this comparison. As noted in [15], phase shifts
calculation are well converged within this model space as
can be seen in Fig. 2 for d3/2 and s1/2.
In Fig. 3 we show the result for the calculation for both
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investigate properties of the NNLOsat Hamiltonian com-
paring with neutron elastic scattering experimental cross
sections in 16O and 40Ca nuclei.

THE MICROSCOPIC OPTICAL POTENTIAL

The Hamiltonian used to generate the self energy is

H(A) = T � Tc.m.(A+ 1) + V +W (1)

where Tc.m.(A + 1) is the kinetic energy center of mass
for a system of A nucleons plus 1 projectile, V and W

are the two and three body interactions. We verified
that applying the reduction of Tc.m.(A) instead has less
then 2% e↵ect in the propagator energies and resulting
phase shifts. When also the 3 body termW is considered,
we apply the reduction of the three body interaction to
an equivalent e↵ective two–body, considering the normal
ordering contribution, as demonstrated in [25].

The SCGF calculation is then performed by iterating
the Dyson equation g(!) = g

0(!) + g
0(!)⌃?(!)g(!) in

the harmonic oscillator basis of Nmax+1 oscillator shells.
g
0(!) is the free particle propagator, and ⌃?(!) the irre-

ducible self-energy which has the following general spec-
tral representation,
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where ↵ and � label the single particle quantum numbers
and ⌃(1) is the correlated and energy independent mean
field.

We perform calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrices M (N) couple single particle states to interme-
diate 2p1h (2h1p) configurations, C (D) are interaction
matrices among these configurations and K are their un-
perturbed energies [29, 30]. All intermediate particle–
hole states in the selected space n, k must be considered
in the calculation, for the basis states to be complete, in
the case of Nmax = 13 this corresponds to considering all
excitations up to J = 29 of both parities and to about
400 MeV of excitation energy.

The resulting dressed single particle propagator can be
written in the Lehmann representation as
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the poles of the propagator EA+1
n �E

A
0 indicate then the

energy of the n–th exited state in the A+1 system respect
to the ground state of the A system. To be noted that
there is an ambiguity in this solution, our Hamiltonian
has been explicitly corrected for center of mass of A +
1 particles and the propagator contains both | Ai and
| A+1i.
The center of mass separation is not guaranteed in

spherical harmonic oscillator basis, which breaks transla-
tional invariance, when a truncation is being employed.
It is numerically verified only for Nmax

>⇠ 19 [31]. For
this reason both h | and | i in the definition of the self
energy and optical potential are not eigenstates of the to-
tal momentum. This carries an intrinsic uncertaininty in
center of mass definition, that however can be checked by
benchmarking with full Nh̄!–space NCSM calculations
(cf. Fig. 1).
The optical potential for a given partial wave (l, j) is

expressed in momentum space from the harmonic oscilla-
tor space using the fn,l(k) harmonic oscillator wavefunc-
tions,
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which is non local and energy–dependent. Hence, at
variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
tical potential within the Lehmann representation.
To be noted that the parameter i� enters in our cal-

culation only in the construction of the optical potential
spectral representation of Eq. 4, and plays no role in
the iterative solution of the many-body problem, that
comes from the diagonalization of the equation of mo-
tion [5, 20, 30]. For the calculation here shown put the
i� parameter as energy dependent 0.002MeV✏2/⇡(✏2 �
(22.36MeV)2) where ✏ = E�EF , with EF the Fermi en-
ergy, checking the convergence of the observables under
consideration.
We solve the corresponding scattering problem in the

full one-body space, embedding in the continuum the
ADC(3) self energy calculated in the harmonic oscilla-
tor basis using Eq. 4. We diagonalize the Schrödinger–
like equation in momentum space using the appropriate
reduced mass µ = A/(A+ 1)m,
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so that, the kinetic energy is treated exactly, without
truncations. The solution eigenvalue E is the reaction
energy in the center of mass frame, and the eigenfunction
 l,j(k) is the resulting overlap (or scattering) wavefunc-
tion h A+1

n |cn| A
0 i. We fully account for the non locality

and l, j dependence of Eq. (4). For each partial wave and
parity, the phase shifts �(E) are obtained as function of
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High order configurations, or 
ADC(n>>3), to be critical for fully 
ab initio optical potentials



MILANO

Current challenges:

- Pushing ab-initio methods to medium energies – not just 
g.s.

- Poor description of correlations at intermediate 
energies…

- C.0.M. problems    …maybe not so critical at large A.

è Need for an efficient 
sampling of collective 
configurations and 
diagrammatic expansion.
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•A complete expansion requires all 
types of particle-vibration coupling

•The Self-energy S«(w) yields both
single-particle states and scattering

The FRPA Method in Two Words

n p

º particle º hole

…these modes are all resummed
exactly and to all orders in a 

ab initio many-body expansion.

“Extended”
Hartree Fock

R(2p1h)S«(w) = R(2h1p)

CB et al., 
Phys. Rev. C63, 034313 (2001)
Phys. Rev. A76, 052503 (2007)
Phys. Rev. C79, 064313 (2009)

Particle vibration coupling is the main mechanism driving the redistribution and fragmentation 
of particle strength—expecially in the quasielastic regions around the Fermi surface…



Automatic Diagrammatic Generation (ADG) of the self-energy

G-ADC(1)

G-ADC(2)

G-ADC(3) 

Goal: Drawing of self-energy Feynman diagrams and derivation of corresponding 
algebraic expressions are performed automatically

Background: ADG of the BMBPT expansion (P. Arthuis et al Comp. Phys. Comm. 240, 202 (2019)) 

G-ADC(N) 

Work in progress by F. Raimondi, CEA, Saclay

Order 0 1 2 3 4 5
0/2/4-leg vertex General 1 2 8 59 568 6 805

HFB vacuum 1 1 1 10 82 938

0/2/4/6-leg vertex General 1 3 23 396 10716 + 100 000

HFB vacuum 1 2 8 77 5 055 + 100 000

Tree structure
of B-MBPT
diagrams:
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Reaching (Gorkov – 3NF – higher ordes…) is a mess

Gorkov at 2nd order and
ONLY NN forces:

Gorkov at 3rd order and ONLY NN forces:

pp/hh-ladders:

hh-interactions (hh int. among pp ladders!!!)

ph-rings:

CB, V. Somà, T. Duguet, 

Phys Rev C 105, 044330 (2022)
V. SOMÀ, T. DUGUET, AND C. BARBIERI PHYSICAL REVIEW C 84, 064317 (2011)

FIG. 3. Second-order anomalous self-energies !21 (2′) (left) and
!21 (2′′) (right). See Fig. 1 for conventions.

expressions, let us introduce useful quantities
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and

N k1k2k3
a ≡

∑

ijk

V̄akij Vk1
i Vk2

j Ū k3
k , (70a)

Qk1k2k3
a ≡

∑

ijk

V̄ak̄ij̄ Vk1
i U k2

k V̄k3
j = N k1k3k2

a , (70b)

Sk1k2k3
a ≡

∑

ijk

V̄ak̄īj U k1
k Vk2

j V̄k3
i = N k3k2k1

a , (70c)

in terms of which second-order self-energies are expressed
below. Using relations (41) one shows that

M̄k1k2k3
a = ηa Mk1k2k3

ã , (71a)

P̄k1k2k3
a = ηa Pk1k2k3

ã , (71b)

R̄k1k2k3
a = ηa Rk1k2k3

ã , (71c)

and

N̄ k1k2k3
a = −ηa N k1k2k3

ã , (72a)

Q̄k1k2k3
a = −ηa Qk1k2k3

ã , (72b)

S̄k1k2k3
a = −ηa Sk1k2k3

ã . (72c)

Given that P and R can be obtained from M through odd
permutations of indices {k1, k2, k3} and taking into account
the symmetries of interaction matrix elements, one can prove
that such quantities display the properties

∑

k1k2k3

Mk1k2k3
a Mk1k2k3

b

∗ = +
∑

k1k2k3

Pk1k2k3
a Pk1k2k3

b

∗

= +
∑

k1k2k3

Rk1k2k3
a Rk1k2k3

b

∗
, (73a)

and
∑

k1k2k3

Mk1k2k3
a Pk1k2k3

b

∗ = +
∑

k1k2k3

Mk1k2k3
a Rk1k2k3

b

∗

= +
∑

k1k2k3

Pk1k2k3
a Mk1k2k3

b

∗

= −
∑

k1k2k3

Pk1k2k3
a Rk1k2k3

b

∗

= +
∑

k1k2k3

Rk1k2k3
a Mk1k2k3

b

∗

= −
∑

k1k2k3

Rk1k2k3
a Pk1k2k3

b

∗
. (73b)

Similarly, for N , Q, and S one has
∑

k1k2k3

N k1k2k3
a

∗ N k1k2k3
b = +

∑

k1k2k3

Qk1k2k3
a

∗ Qk1k2k3
b

= +
∑

k1k2k3

Sk1k2k3
a

∗ Sk1k2k3
b , (74a)

and
∑

k1k2k3

N k1k2k3
a

∗ Qk1k2k3
b = +

∑

k1k2k3

N k1k2k3
a

∗ Sk1k2k3
b

= +
∑

k1k2k3

Qk1k2k3
a

∗ N k1k2k3
b

= −
∑

k1k2k3

Qk1k2k3
a

∗ Sk1k2k3
b

= +
∑

k1k2k3

Sk1k2k3
a

∗ N k1k2k3
b

= −
∑

k1k2k3

Sk1k2k3
a

∗ Qk1k2k3
b . (74b)

Analogous properties can be derived for terms mixing
{M,P,R} and {N ,Q,S}.

Let us now consider !11, whose second-order contribu-
tions, evaluated in Eqs. (B17) and (B19), can be written as

!
11 (2′)
ab (ω)

= 1
2

∑

k1k2k3

{
Mk1k2k3

a

(
Mk1k2k3

b

)∗

ω − Ek1k2k3 + iη
+

(
N̄ k1k2k3

a

)∗ N̄ k1k2k3
b

ω + Ek1k2k3 − iη

}

,

(75)

!
11 (2′′)
ab (ω)

= −
∑

k1k2k3

{
Mk1k2k3

a

(
Pk1k2k3

b

)∗

ω − Ek1k2k3 + iη
+

(
N̄ k1k2k3

a

)∗ Q̄k1k2k3
b

ω + Ek1k2k3 − iη

}

,

(76)

where the notation Ek1k2k3 ≡ ωk1 + ωk2 + ωk3 has been intro-
duced. Summing the two terms and using properties (73) and
(74) one obtains

!
11 (2′+2′′)
ab (ω)

=
∑

k1k2k3

{
Ck1k2k3

a

(
Ck1k2k3

b

)∗

ω − Ek1k2k3 + iη
+

(
D̄k1k2k3

a

)∗ D̄k1k2k3
b

ω + Ek1k2k3 − iη

}

, (77)

where

Ck1k2k3
a ≡ 1√

6

[
Mk1k2k3

a − Pk1k2k3
a − Rk1k2k3

a

]
, (78a)

Dk1k2k3
a ≡ 1√

6

[
N k1k2k3

a − Qk1k2k3
a − Sk1k2k3

a

]
. (78b)

Notice that from Eqs. (71) and (72) follow C̄k1k2k3
a =

+ηa Ck1k2k3
ã and D̄k1k2k3

a = −ηa Dk1k2k3
ã . All other second-order

064317-10
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FIG. 5. Third-order skeleton diagrams corresponding to e⌃11(!) with a particle-particle (pp) type intermediate interaction.
The contributions to the other Nambu components of the self-energy with pp intermediate interactions originate from four
analogous diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

exactly in the same way both for backward time propa-
gation and for the inversion of a Nambu indices between
normal to anomalous. It is easy to convince oneself that
the same considerations apply to particle-number non-
conserving interactions, as long as these are hermitian.
Moreover, as for the case of quasiparticle antisymmetriza-
tion, the presence of anomalous propagators allows for
any possible topological combination of lines and ensures
that this correspondence is realised also for more com-
plex diagrams, at any order in the Feynman expansion.
Therefore, any portion of Feynman diagram contributing
to a normal (anomalous) forward part of the self-energy
will contribute identically to the backward part of corre-
sponding anomalous (normal) case. It follows that ex-
actly the same matrices C and D must appear in all four
self-energies of Eqs. (29).

The rigorous proof of this property is beyond the scope
of the present work and is not elaborated on further.
However, let us remind that relations (29) naturally stem
out from Nambu covariant theory of Ref. [40]. In this
case both the normal and anomalous contributions are
embedded in a single propagator such that the C and D

couplings are part of a unique coupling matrix. For our
purposes, we have verified by hand that Eqs. (29) are
satisfied by all diagrams discussed in the present work.

B. Third-order skeleton diagrams

Following the above discussion one concludes that it is
su�cient to derive ADC(3) expressions of the coupling
and interaction matrices associated with one particular
Gorkov self-energy. While the diagrams contributing to
e⌃11(!) are presently employed, the other self-energies,
Eqs. (29b-29d) were checked to lead to the same results.

There exist 17 possible third-order skeleton diagrams
that must be grouped in three classes on the basis of
their connection through Pauli exchanges of propagator
lines. These are depicted respectively in Figs. 5, 6 and 7.
Each middle vertex in these diagrams acts as a seed for
the all-orders Tamm-Danco↵ resummations generated by

ADC(3).
Diagram 5a is the diagram that makes two-particle and

two-hole interact in the ISCs in the usual Dyson-ADC(3)
formalism, respectively for forward and backward time
propagation. Adding diagrams 5b, 5c and 5d guaranties
the antisymmetrization with respect to the third, non in-
teracting quasiparticle. The frequency integrals needed
to work out the algebraic expressions of these diagrams
are discussed in App. C and lead to the same contribu-
tions as in Eqs. (39), plus second-order corrections to
the coupling amplitudes and first-order correction to the
energy matrix.
Let us first define the tensor

tk3k4
k1k2

⌘

X

↵���

V̄
k1
↵ V̄

k2
� v↵�,�� Uk3

� U
k4
�

� (!k1 + !k2 + !k3 + !k4)
(42)

that is closely related to the lowest-order double ampli-
tude in Bogoliubov coupled cluster (BCC) theory [47].
Note that BCC expressions are typically derived perform-
ing first the normal ordering of the Hamiltonian with
respect to the Bogoliubov vacuum and expressing it in
terms of Bogoliubov quasi-particle operators whereas the
original matrix elements of V appear in Eq. (42). In the
special case of the HFB mean field, U and V amplitudes
account for the normal ordering and tk3k4

k1k2
does indeed re-

duce to the lowest order BCC double amplitude. Conse-
quently, Eq. (42) extends the concept of BCC amplitudes
to account for the strength fragmentation of a dressed
propagator. With this tensor at hand, the contributions
to the coupling amplitudes resulting from the diagrams
displayed in Fig. 5 read as

C
(IIa)
↵,r =

1
p
6
P123

X

µ ⌫ �
k4 k5

v↵�,µ⌫
2

�
V̄
k4
µ V̄

k5
⌫

�⇤
tk1k2
k4k5

V̄
k3
� , (43a)

C
(IIb)
↵,r =

1
p
6
P123

X

µ ⌫ �
k4 k5

v↵�,µ⌫
⇣
V̄
k4
⌫ U

k5
�

⌘⇤
tk1k2
k4k5

U
k3
µ , (43b)

D̄
(IIa)
r,↵ =

1
p
6
P123

X

µ ⌫ �
k4 k5

tk4k5
k1k2

U
k3
�

�
U

k4
µ U

k5
⌫

�⇤ vµ⌫,↵�
2

, (43c)
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FIG. 6. Third-order skeleton diagrams contributing to e⌃11(!) with a hole-hole (hh) type intermediate interaction. Similarly to
Fig. 5, the contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from
four analogous diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

D̄
(IIb)
r,↵ =

1
p
6
P123

X

µ ⌫ �
k4 k5

tk4k5
k1k2

V̄
k3
µ

⇣
U

k4
⌫ V̄

k5
�

⌘⇤
vµ⌫,↵�. (43d)

The first-order corrections to the energy matrix di↵er
according to whether they refer to forward or backward
poles of the self-energy, i.e. to the first or second term
on the right-hand side of Eqs. (29), respectively,

E
(Ia)
r,r0 =

8
>>>>>>>>>>><

>>>>>>>>>>>:

1
6P123P456

⇣
E
(pp)
k1k2,k4k5

�k3,k6

⌘

for forward poles,

1
6P123P456

⇣
E
(hh)
k1k2,k4k5

�k3,k6

⌘

for backward poles,

(44)

where

E
(pp)
k1k2,k4k5

=
X

↵���

(Uk1
↵ U

k2
� )⇤ v↵�,�� U

k4
� U

k5
� , (45)

E
(hh)
k1k2,k4k5

=
X

↵���

V̄
k1
↵ V̄

k2
� v↵�,�� (V̄

k4
� V̄

k5
� )⇤. (46)

The corresponding hh (pp) interaction contributions
to the forward-going (backward-going) self-energies arise
from the four diagrams in Fig. 6. They are analogous
to the diagrams of Fig. 5 except for inverting the orien-
tation of all lines entering and leaving the intermediate
interaction vertex. These diagrams lead to the following
corrections to the coupling amplitudes

C
(IIc)
↵,r =

1
p
6
P123

X

µ ⌫ �
k4 k5

v↵�,µ⌫
2

�
V̄
k4
µ V̄

k5
⌫

�⇤
tk4k5
k1k2

V̄
k3
� , (47a)

C
(IId)
↵,r =

1
p
6
P123

X

µ ⌫ �
k4 k5

v↵�,µ⌫
⇣
V̄
k4
⌫ U

k5
�

⌘⇤
tk4k5
k1k2

U
k3
µ , (47b)

D̄
(IIc)
r,↵ =

1
p
6
P123

X

µ ⌫ �
k4 k5

tk1k2
k4k5

U
k3
�

�
U

k4
µ U

k5
⌫

�⇤ vµ⌫,↵�
2

, (47c)

D̄
(IId)
r,↵ =

1
p
6
P123

X

µ ⌫ �
k4 k5

tk1k2
k4k5

V̄
k3
µ

⇣
U

k4
⌫ V̄

k5
�

⌘⇤
vµ⌫,↵�, (47d)

whereas the corresponding first-order corrections to the
energy matrix are

E
(Ib)
r,r0 =

8
>>>>>>>>>>><

>>>>>>>>>>>:

1
6P123P456

⇣
E
(hh)
k1k2,k4k5

�k3,k6

⌘

for forward poles,

1
6P123P456

⇣
E
(pp)
k1k2,k4k5

�k3,k6

⌘

for backward poles.

(48)

The equivalence between the E and E
T denominators in

Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5
and 6 are all computed together on the same footing. The
topological relation between the two classes of diagrams,
i.e. the inversion of lines in the intermediate interaction,
is reflected into the fact that Eqs. (43) and (47) transform
into each other under the exchange tk1k2

k4k5
$ tk4k5

k1k2
. Insert-

ing all contributions into Eqs. (29) implies self-energy
terms including mixed products of Eqs. (43) and (47).
These are rightful time orderings arising from fourth-
and higher-order diagrams and therefore not depicted in
Figs. 5, 6 and 7.
The remaining third-order skeleton diagrams involve a

particle-hole type intermediate interaction and are dis-
played in Fig. 7. Performing the energy integral and
making the antisymmetrization with respect to all ISC
quasiparticle indices explicit through the use of the op-
erator

Aij` f(ki, kj , k`)

⌘ f(ki, kj , k`) + f(kj , k`, ki) + f(k`, ki, kj)

� f(kj , ki, k`)� f(k`, kj , ki)� f(ki, k`, kj) ,
(49)
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FIG. 7. Third-order skeleton diagrams contributing to e⌃11(!) with a particle-hole (ph) type intermediate interaction. Similarly
to Figs. 5 and Fig. 6, the contributions to the other Nambu components of the self-energy with ph intermediate interactions
originate from nine analogous diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

the nine diagrams of Fig. 7 introduce three additional
terms to each coupling matrix

C
(IIe)
↵,r =

1
p
6
A123

X

µ ⌫ �
k7 k8

v↵�,µ⌫
⇣
V̄
k7
⌫ U

k8
�

⌘⇤
U

k1
µ tk8k2

k7k3
, (50a)

C
(IIf)
↵,r =

1
p
6
A123

X

µ ⌫ �
k7 k8

v↵�,µ⌫
⇣
U

k7
� V̄

k8
µ

⌘⇤
U

k1
⌫ tk8k2

k7k3
, (50b)

C
(IIg)
↵,r =

1
p
6
A123

X

µ ⌫ �
k7 k8

v↵�,µ⌫
�
V̄
k7
µ V̄

k8
⌫

�⇤
V̄
k1
� tk8k2

k7k3
, (50c)

D̄
(IIe)
r,↵ =

1
p
6
A123

X

µ ⌫ �
k7 k8

V̄
k1
⌫ tk2k8

k3k7

⇣
V̄
k7
� U

k8
µ

⌘⇤
vµ⌫,↵�, (50d)

D̄
(IIf)
r,↵ =

1
p
6
A123

X

µ ⌫ �
k7 k8

V̄
k1
µ tk2k8

k3k7

⇣
U

k7
⌫ V̄

k8
�

⌘⇤
vµ⌫,↵�, (50e)

D̄
(IIg)
r,↵ =

1
p
6
A123

X

µ ⌫ �
k7 k8

U
k1
� tk2k8

k3k7

�
U

k7
µ U

k8
⌫

�⇤
vµ⌫,↵�, (50f)

whereas the particle-hole contribution to the ISC energy
interaction matrix is given by

E
(Ic)
r,r0 =

1

6
A123A456

⇣
�k1,k4 E

(ph)
k2k3,k5k6

⌘
(51)

12

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. Third-order skeleton diagrams contributing to e⌃11(!) with a particle-hole (ph) type intermediate interaction. Similarly
to Figs. 5 and Fig. 6, the contributions to the other Nambu components of the self-energy with ph intermediate interactions
originate from nine analogous diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

the nine diagrams of Fig. 7 introduce three additional
terms to each coupling matrix
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p
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X
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⇣
U

k7
� V̄

k8
µ

⌘⇤
U

k1
⌫ tk8k2

k7k3
, (50b)
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A123

X
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⌫

�⇤
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k1
� tk8k2

k7k3
, (50c)
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FIG. 7. Third-order skeleton diagrams contributing to e⌃11(!) with a particle-hole (ph) type intermediate interaction. Similarly
to Figs. 5 and Fig. 6, the contributions to the other Nambu components of the self-energy with ph intermediate interactions
originate from nine analogous diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

the nine diagrams of Fig. 7 introduce three additional
terms to each coupling matrix
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Electron and ν scattering on 40Ar and Ti

CB, N. Rocco, V. Somà, Phys. Rev. C100, 062501(R) (2019) 

Ti protons contribution 
(‘mix’) is nearly identical 
to neutrons in 40Ar.
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Liquid Argon projection chamber is being used.  It will require one 
order of magnitude (20% à 2%) improvement in theoretical prediction 
for  ν-40Ar  cross sections to achieve proper event reconstruction.

è Need good knowledge of 40Ar spectral functions and consistent structure-
scattering theories.
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HAL-QCD and  application for Ys in nuclei now possible

• AV4’ + UIX requires very large with phenomenological hypernuclear forces 
requires large ΛNN 3-baryon force

• Physical mass now under reach (mπ≈ 145 MeV)  for hyperons

• HALQCD  ΛN 3-baryon force is already very close to experiment 

D. Lonardoni, A. Lovato, CB, T. Inoue, HALQCD coll

The e�ciency of the AFDMC is drastically improved imple-
menting an importance sampling technique in both the spatial
coordinates and spin-isospin configurations. To this aim, the
propagator of Eq. (15) is modified as

G
I(Xi+1, Xi, �⌧) = G(Xi+1, Xi, �⌧)

 I(Xi+1)
 I(Xi)

, (21)

where the importance-sampling function is typically taken to
be  I(X) =  T (X). At each time step, the walkers are prop-
agated sampling a 3A-dimensional gaussian vector to shift the
spatial coordinates and generating a set of auxiliary fields X
from Gaussian distributions. To remove the spurious linear
terms coming from the exponential of both Eqs. (16) and (18),
we consider four possible moves, obtained by separately flip-
ping the sign of the spatial moves and spin-isospin rotations.
The corresponding weights are

wi =
 I(±Ri+1, S i+1(±X))

 I(Ri, S i)
. (22)

Only one of these four configurations is kept and further prop-
agated in imaginary time. This is done according to a heat-
bath sampling among the four normalized weights wi/W, with
W =

P4
i=1 wi/4 being the cumulative weight. The latter is then

rescaled by

W ! We
�[VS I (Ri)/2+VS I (Ri+1)/2�ET ]�⌧ , (23)

and associated to this new configuration for branching and com-
puting observables. This “plus and minus” algorithm, intro-
duced in the AFDMC in Ref [? ], significantly improves the
stability of the algorithm, as it reduces the dependence of the
results on the central correlation function and on �⌧. Expecta-
tion values of operators that commute with the Hamiltonian are
estimated during the imaginary-time propagation as

hO(⌧)i =
h T |O| (⌧)i
h T | (⌧)i

=

P
Xi
h T (Xi)|O| (⌧, Xi)i/ I(Xi)P

Xi
h T (Xi)| (⌧, Xi)i/ I(Xi)

.

(24)

To alleviate the sign problem, as done in reference [8], we
implement an algorithm similar to the constrained-path approx-
imation [? ], but applicable to complex wave functions and
propagators. The weights wi of Eq. (22) are evaluated with

 I(Xi+1)
 I(Xi)

! Re
(
 I(Xi+1)
 I(Xi)

)
, (25)

and they are set to zero if the ratio is negative. Unlike the fixed-
node approximation, which is applicable for scalar potentials
and for cases in which a real wave function can be used, the
solution obtained from the constrained propagation is not a rig-
orous upper-bound to the true ground-state energy [? ]. To re-
move the bias associated with this procedure, the configurations
obtained from a constrained propagation are further evolved us-
ing the following positive-definite importance sampling func-
tion [7? ]

 I(X) =
���Re{ T (X)}

��� + ↵
���Im{ T (X)}

��� , (26)

where we typically take 0.1 < ↵ < 0.5. Along this uncon-
strained propagation, the expectation value of the energy is es-
timated according to Eq. (24). The asymptotic value is found
by fitting the imaginary-time behavior of the unconstrained en-
ergy with a single-exponential function, as in reference [9].
Unconstrained propagations have been performed in the latest
AFDMC studies of atomic nuclei [7, 10] and infinite nucleonic
matter [11, 12].

4. Results
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Figure 3: ⇤ separation energies.

Table 1: ⇤ separation energies (in MeV) for di↵erent hypernuclei with the hy-
peron in di↵erent single-particle states. Second column reports the AFDMC
results using the original HALQCD96 ⇤N potential. Third column shows the
results for the modified HALQCD96 ⇤N potential (see text for details). In the
last column, the available experimental data [] are reported.

A

⇤Z J
⇡ (state) HALQCD96 HALQCD96* Exp

5
⇤

He 1/2+ (s) 0.21(5) 1.02(3) 3.12(2)
16
⇤

O 1� (s) 9.5(5) 13.5(2) 13.4(4)
2+ (p) �1.3(2) 0.5(1) 2.5(2)

40
⇤

Ca 2+ (s) 21.0(5) 26.8(5) 19.3(1.1)
3� (p) 9.3(6) 13.7(6) 11.0(5)

5. Summary
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Summary and outlook
Ab initio applications to structure and reactions are becoming increasingly powerful:

à Nuclear forces being advanced (through EFT) and challenges on many-body theory

à Systematic applications beyond testing forces and structure becoming available

The Self-Consistent Green’s Function method 
(SCGF):

- ADC(n) and FRPA diagrammatic expansions 
(particle-vibration coupling)

- Automatization of diagram generation and 
sampling

Applications:
- Mixed Local-Nonlocal cutoffs in chiral interactions (standard WPC)

[Somà, Navratil, Raimondi, CB, Duguet, Phys Rev C101, 014318 (2020); EPJA in press (arXiv:2009.01829 )]

- Optical potentials from ab initio 
[A. Idini, CB, P. Navratil, Phys. Rev. Lett. 123, 092501 (2019); Vorabbi et al. in prep]

- Reaching A≈132 mass 
[P. Arthuis, CB, M. Vorabbi, P. Finelli – Phys, Rev, Lett. 125, 182501 (2020)]

- (Hyper)nuclear forces from LQCD [Lonardoni et al. in prep]

- Neutrino Nucleus scattering (@ GeV energies)
[CB, N. Rocco, V. Somà, Phys. Rev. C100, 062501(R) (2019)]
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Lepton-nucleon cross section

2

tributed in energy and momentum inside the tar-
get [? ].

The formalism based on the impulse approximation
(IA) and realistic hole spectral functions (SFs) allows to
combine a realistic description of the initial state of the
nuclear target with a fully-relativistic interaction vertex
and kinematics [16]. Calculations carried out employing
hole SF computed within the correlated-basis function
(CBF) and the SCGF theories have been extensively val-
idated against electron-nucleus scattering data on a num-
ber of nuclei [17? –19]. The somewhat oversimplified
treatment of final-state interactions (FSI) to which the
struck nucleon undergoes has been corroborated compar-
ing the electromagnetic response functions of 12C from
CBF with those of the GFMC [20].

More recently, the factorisation scheme underlying
IA and the SF formalism has been generalized to in-
clude electromagnetic relativistic meson-exchange two-
body currents (MEC), arising from pairs of interacting
nucleons [21]. Employing nuclear overlaps and consis-
tent SFs obtained within the CBF theory, the authors
of Refs. [22] have analyzed the role of MEC in electron
scattering o↵ 12C. They found that two-body currents
are mostly e↵ective in the “dip” region, between the
quasielastic and the �-production peaks. Their inclu-
sion appreciably improves the agreement between theory
and data.

In this work, we further extend the IA scheme by in-
troducing the MEC relevant for charged-current (CC)
and neutral-current (NC) interactions. We study their
role in neutrino and anti-neutrino scattering o↵ 12C and
16O nuclei, both used as targets in neutrino-oscillation
experiments. We adopt the two-body currents derived
in Ref. [23] from the weak pion-production model of
Ref. [24]. It has been shown that they provide results
consistent with those of Ref. [25], which were also
adopted in the extension of the IA and SF formal-
ism of Ref. [22].

We develop a dedicated code that automatically carries
out the calculation of the MEC spin-isospin matrix ele-
ments, performing the integration using the Metropolis
Monte Carlo algorithm [26]. To validate our implementa-
tion of the two-body currents, we perform a benchmark
calculation of the CC response functions within the rela-
tivistic Fermi gas model, comparing our results with the
findings of Ref. [23].

We consider two nuclear SFs, derived within
the framework of nuclear many-body theory us-
ing the CBF formalism [27] and the self-consistent
Green’s function (SCGF) theory [28]. These two
approaches start from di↵erent, albeit realistic, nuclear
hamiltonians to describe the interactions between pro-
tons and neutrons. Moreover, the approximations in-
volved in the calculations of the hole spectral function
are also peculiar to of each of the two methods. Hence,
a comparison of the cross sections obtained employing
the CBF and the SCGF nuclear SFs helps gauging the
theoretical error of the calculation.

More specifically, we analyze the double-di↵erential
cross sections of 12C and 16O for both CC and NC
transitions for incoming (anti)neutrino energy of 1 GeV
and two values of the scattering angle: ✓µ = 30� and
✓µ = 70�. We also present results for the total CC cross
section for neutrino and anti-neutrino scattering o↵ 12C
as a function of the incoming (anti)neutrino energy. Our
calculations are compared with the experimental data ex-
tracted by the MiniBooNE collaboration [29].
The structure of the nuclear cross section, as well as

its expression in terms of relevant response functions are
reviewed in Section II. Section III is devoted to the de-
scription of the IA, including its extension to account for
a consistent treatment of one- and two-nucleon current
contributions. The CBF theory and SCGF approaches
are also briefly outlined. In Section IV we discuss the
explicit expressions of the relativistic two-body currents
employed, while Section V is dedicated to their numeri-
cal implementation. In Section VI we present our results
and in Section VII we state our conclusions.

II. FORMALISM

The double-di↵erential cross section for ⌫ and ⌫̄ inclu-
sive scattering o↵ a nucleus can be expressed as [30, 31]

⇣ d�

dT 0d cos ✓0

⌘

⌫/⌫̄
=

G2

2⇡

k0

2E⌫

h
L̂CCRCC + 2L̂CLRCL

+ L̂LLRLL + L̂TRT ± 2L̂T 0RT 0

i
, (1)

where G = GF and G = GF cos ✓c for NC and CC pro-
cesses, respectively, with cos ✓c = 0.97425 [32]. The +
(�) sign corresponds to ⌫ (⌫̄) induced reactions. We
adopt the value GF = 1.1803⇥ 10�5 GeV�2, as from the
analysis of 0+ ! 0+ nuclear �-decays of Ref. [33], which
accounts for the bulk of the inner radiative corrections.
With k = (E⌫ ,k) and k0 = (E`,k0) we denote the initial
neutrino and the final lepton four-momenta, respectively,
and ✓ is the lepton scattering angle. Introducing the four-
momentum

Q = k + k0 = (⌦,Q) , Q = (Qx, 0, Qz) (2)

and the momentum transfer

q = k � k0 = (!,q) , q = (0, 0, qz), (3)

the kinematical factors can be conveniently cast in the
form

L̂CC = ⌦2
� q2z �m2

`

L̂CL = (�⌦Qz + !qz)

L̂LL = Qz
2
� !2 +m2

`

L̂T =
Qx

2

2
� q2 +m2

`

L̂T 0 = ⌦qz � !Qz , (4)
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Nuclear structure is in the
hadronic tensor:

INCLUSIVE ELECTRON-NUCLEUS CROSS SECTION … PHYSICAL REVIEW C 98, 025501 (2018)

where τ = −q2/(4m2). Finally, using the identity

δ
(
ω − e(p) − EA−1

f + EA
0

)

=
∫

dE δ(ω + E − e(p)) δ
(
E + EA−1

f − EA
0

)
, (33)

we can rewrite the hadron tensor as

Wµν(q,ω) =
∫

d3k

(2π )3
dEPh(k,E)

m2

e(k)e(k + q)

×
∑

i

〈k|jµ
i
†|k + q〉〈k + q|j ν

i |k〉

× δ(ω + E − e(k + q)) , (34)

where the factors m/e(k) and m/e(k + q) have to be included
to account for the implicit covariant normalization of the four-
spinors of the initial and final nucleons in the matrix elements
of the relativistic current.

The hole spectral function

Ph(k,E) =
∑

f

∣∣〈ψA
0

∣∣[|k〉 ⊗
∣∣ψA−1

f

〉]∣∣2

× δ
(
E + EA−1

f − EA
0

)
(35)

gives the probability distribution of removing a nucleon with
momentum k from the target nucleus, leaving the residual
(A − 1) system with an excitation energy E. Note that in
Eq. (34) we neglected Coulomb interactions and the other
(small) isospin-breaking terms and made the assumption,
largely justified in the case of closed-shell nuclei, that the
proton and neutron spectral functions are identical.

Rewriting the nuclear matrix element as

[ 〈
ψA−1

f

∣∣ ⊗ 〈k|
]∣∣ψA

0

〉
=

∑

α

Yk
α(̃α(k)

=
∑

α

(̃α(k)
〈
ψA−1

f

∣∣aα

∣∣ψA
0

〉
, (36)

we recover the more familiar expression of the spectral function
written as the imaginary part of the Green’s function describing
the propagation of a hole state

Ph(k,E) = 1
π

∑

αβ

(̃∗
β(k)(̃α(k)

× Im
〈
ψA

0

∣∣a†
β

1
E + (H − EA

0 ) − iε
aα

∣∣ψA
0

〉
. (37)

In the kinematical region in which the interactions between
the struck particle and the spectator system cannot be ne-
glected, the IA results have to be modified to include the effect
of FSI. Following Refs. [19,20], the multiple scatterings that
the struck particle undergoes during its propagation through the
nuclear medium are taken into account through a convolution
scheme. The IA responses are folded with a function fk+q,

normalized as
∫ +∞

−∞
dωfk+q(ω) = 1 . (38)

The double differential cross section is then given by
(

d2σ

dEe′d,e′

)

FSI

=
∫

d3k

(2π )3
dE

∫
dω′ fk+q(ω − ω′)

× m

e(k)
m

e(k + q)
Ph(k,E)

α2

q4

Ee′

Ee

× Lµν

∑

i

〈k|
(
j

µ
i

)†|k + q〉〈k + q|j ν
i |k〉

× δ(ω′ + E − ẽ(k + q))θ (|k + q| − pF ).

(39)

In the last equation, we modified the energy spectrum of the
struck nucleon

ẽ(k + q) = e(k + q) + U (tkin(k + q)) (40)

by considering the real part of the optical potential U derived
from the Dirac phenomenological fit of Ref. [37]. This allows
to describe the propagation of the knocked-out particle in the
mean-field generated by the spectator system.

IV. RESULTS

Our calculations have been performed using the NNLOsat
chiral interaction [15], which was specifically designed to
accurately describe both binding energies and nuclear radii of
midmass nuclei [38,39]. In Fig. 2 we analyze the convergence
of the SCGF-ADC(3) point-proton densities of 4He with
respect to the oscillator frequency (h̄,) and the size of the
model space (Nmax). The different lines almost superimpose,
indicating that for h̄, ≈ 20 MeV and Nmax ! 11 the cal-
culation converges and no longer depends on the oscillator
parameters. The density calculated from the OpRS is also
displayed. The nice agreement with the SCGF-ADC(3) curves
follows from the requirement that the overlap functions in the

FIG. 2. Point proton densities in 4He, as predicted by NNLOsat.
The dashed (blue) line corresponds to the OpRS derived for Nmax =
11 and h̄, = 20 MeV. The other lines have been obtained using the
SCGF full propagator for Nmax = 11, 13 and h̄, = 20, 22 MeV.

025501-5

3

with m2
` = k0 2 being the mass of the outgoing lepton.

The five electroweak response functions are given by

RCC = W 00

RCL = �
1

2
(W 03 +W 30)

RLL = W 33

RT = W 11 +W 22

RT 0 = �
i

2
(W 12

�W 21) , (5)

where the hadronic tensor

Wµ⌫ =
X

f

h0|jµ †
|fihf |j⌫ |0i�(E0 + ! � Ef ) (6)

contains all information on the structure of the target. It
is defined in terms of the transition between the initial
and final nuclear states |0i and |fi, with energies E0 and
Ef , induced by the nuclear current operator jµ.

Note that the sum in Eq.(6) includes the con-
tributions of inelastic processes, leading to the
appearance of hadrons other than nucleons in fi-
nal state, which we will not discuss in this ar-
ticle. The derivation of the inelastic neutrino-
nucleus cross section within the SF formalism can
be found in Ref.[34].

III. IMPULSE APPROXIMATION

At relatively large values of the momentum transfer,
typically |q| & 500 MeV, the impulse approximation
(IA) can be safely applied under the assumption that
the struck nucleon is decoupled from the spectator (A-
1) particles [8, 16]. Within the IA, the nuclear current
operator reduces to a sum of one-body terms, jµ =

P
i j

µ
i

and the nuclear final state factorizes as

| A
f i ! |pi ⌦ | A�1

f i . (7)

In the above equation |pi denotes the final-state nucleon
with momentum p and energy e(p), while | A�1

f i de-
scribes the (A� 1)-body spectator system. Its energy
and recoiling momentum are fixed by energy and mo-
mentum conservation

EA�1
f = ! + E0 � e(p) , PA�1

f = q� p . (8)

Employing the factorization ansatz and inserting a
single-nucleon completeness relation, the matrix element
of the current operator can be written as

h A
f |j

µ
| A

0 i !

X

k

[h A�1
f |⌦ hk|] | A

0 ihp|
X

i

jµi |ki . (9)

Substituting the last equation in Eq. (6), the incoher-
ent contribution to the hadron tensor, dominant at large
momentum transfer, is given by

Wµ⌫
1b (q,!) =

X

p,k,f

X

i

hk|jµi
†
|pihp|j⌫i |ki|h 

A
0 |[| 

A�1
f i ⌦ |ki]|2

⇥ �(! � e(p)� EA�1
f + EA

0 ) , (10)

where the subscript “1b” indicates that only one-body
currents have been included. Using the identity

�(! � e(p)� EA�1
f + EA

0 ) =Z
dE �(! + E � e(p)) �(E + EA�1

f � EA
0 ) , (11)

and the fact that momentum conservation in the single-
nucleon vertex implies p = k + q, we can rewrite the
hadron tensor as

Wµ⌫
1b (q,!) =

Z
d3k

(2⇡)3
dEPh(k, E)

m2
N

e(k)e(k+ q)

⇥

X

i

hk|jµi
†
|k + qihk + q|j⌫i |ki

⇥ �(! + E � e(k+ q)) . (12)

The factors mN/e(k) and mN/e(k+ q), mN being the
mass of the nucleon, are included to account for the im-
plicit covariant normalization of the four-spinors of the
initial and final nucleons in the matrix elements of the
relativistic current.
The hole spectral function

Ph(k, E) =
X

f

|h A
0 |[|ki ⌦ | A�1

f i]|2

⇥ �(E + EA�1
f � EA

0 ) (13)

provides the probability distribution of removing a nu-
cleon with momentum k from the target nucleus, leaving
the residual (A� 1)-nucleon system with an excitation
energy E. Note that in Eq. (12) we neglected Coulomb
interactions and the other (small) isospin-breaking terms
and made the assumption, largely justified in the case
of symmetric closed shell nuclei, that the proton and
neutron spectral functions are identical.

Using the Sokhotski-Plemelj theorem [35] we can
rewrite Eq. (13) as

Ph(k, E) =
1

⇡

X

f

Imh0|
1

E + EA�1
f � EA

0 � i✏
[|ki

⌦ | A�1
f i][h A�1

f |⌦ hk|]|0i . (14)

Exploiting the fact that H| A�1
f i = EA�1

f | A�1
f i and

the completeness of the A� 1 states, the hole SF can be
expressed in terms of the hole Green’s function

Ph(k, E) =
1

⇡
Imh0|a†k

1

E + (H � EA
0 )� i✏

ak|0i . (15)

Finally, it has to be noted that the single nucleon mo-
mentum distribution, corresponds to the integral of the
spectral function over the removal energy

n(k) = h A
0 |a

†
kak| 

A
0 i =

Z
dEP (k, E) . (16)
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` = k0 2 being the mass of the outgoing lepton.
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contains all information on the structure of the target. It
is defined in terms of the transition between the initial
and final nuclear states |0i and |fi, with energies E0 and
Ef , induced by the nuclear current operator jµ.

Note that the sum in Eq.(6) includes the con-
tributions of inelastic processes, leading to the
appearance of hadrons other than nucleons in fi-
nal state, which we will not discuss in this ar-
ticle. The derivation of the inelastic neutrino-
nucleus cross section within the SF formalism can
be found in Ref.[34].

III. IMPULSE APPROXIMATION

At relatively large values of the momentum transfer,
typically |q| & 500 MeV, the impulse approximation
(IA) can be safely applied under the assumption that
the struck nucleon is decoupled from the spectator (A-
1) particles [8, 16]. Within the IA, the nuclear current
operator reduces to a sum of one-body terms, jµ =
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and the nuclear final state factorizes as
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In the above equation |pi denotes the final-state nucleon
with momentum p and energy e(p), while | A�1

f i de-
scribes the (A� 1)-body spectator system. Its energy
and recoiling momentum are fixed by energy and mo-
mentum conservation

EA�1
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Employing the factorization ansatz and inserting a
single-nucleon completeness relation, the matrix element
of the current operator can be written as
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Substituting the last equation in Eq. (6), the incoher-
ent contribution to the hadron tensor, dominant at large
momentum transfer, is given by
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where the subscript “1b” indicates that only one-body
currents have been included. Using the identity
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and the fact that momentum conservation in the single-
nucleon vertex implies p = k + q, we can rewrite the
hadron tensor as
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The factors mN/e(k) and mN/e(k+ q), mN being the
mass of the nucleon, are included to account for the im-
plicit covariant normalization of the four-spinors of the
initial and final nucleons in the matrix elements of the
relativistic current.
The hole spectral function

Ph(k, E) =
X
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provides the probability distribution of removing a nu-
cleon with momentum k from the target nucleus, leaving
the residual (A� 1)-nucleon system with an excitation
energy E. Note that in Eq. (12) we neglected Coulomb
interactions and the other (small) isospin-breaking terms
and made the assumption, largely justified in the case
of symmetric closed shell nuclei, that the proton and
neutron spectral functions are identical.

Using the Sokhotski-Plemelj theorem [35] we can
rewrite Eq. (13) as
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1
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f i and

the completeness of the A� 1 states, the hole SF can be
expressed in terms of the hole Green’s function
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spectral function over the removal energy
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h0|jµ †
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contains all information on the structure of the target. It
is defined in terms of the transition between the initial
and final nuclear states |0i and |fi, with energies E0 and
Ef , induced by the nuclear current operator jµ.

Note that the sum in Eq.(6) includes the con-
tributions of inelastic processes, leading to the
appearance of hadrons other than nucleons in fi-
nal state, which we will not discuss in this ar-
ticle. The derivation of the inelastic neutrino-
nucleus cross section within the SF formalism can
be found in Ref.[34].

III. IMPULSE APPROXIMATION

At relatively large values of the momentum transfer,
typically |q| & 500 MeV, the impulse approximation
(IA) can be safely applied under the assumption that
the struck nucleon is decoupled from the spectator (A-
1) particles [8, 16]. Within the IA, the nuclear current
operator reduces to a sum of one-body terms, jµ =

P
i j

µ
i

and the nuclear final state factorizes as

| A
f i ! |pi ⌦ | A�1
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In the above equation |pi denotes the final-state nucleon
with momentum p and energy e(p), while | A�1

f i de-
scribes the (A� 1)-body spectator system. Its energy
and recoiling momentum are fixed by energy and mo-
mentum conservation

EA�1
f = ! + E0 � e(p) , PA�1

f = q� p . (8)

Employing the factorization ansatz and inserting a
single-nucleon completeness relation, the matrix element
of the current operator can be written as
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Substituting the last equation in Eq. (6), the incoher-
ent contribution to the hadron tensor, dominant at large
momentum transfer, is given by
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currents have been included. Using the identity
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and the fact that momentum conservation in the single-
nucleon vertex implies p = k + q, we can rewrite the
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The factors mN/e(k) and mN/e(k+ q), mN being the
mass of the nucleon, are included to account for the im-
plicit covariant normalization of the four-spinors of the
initial and final nucleons in the matrix elements of the
relativistic current.
The hole spectral function
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0 |[|ki ⌦ | A�1
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provides the probability distribution of removing a nu-
cleon with momentum k from the target nucleus, leaving
the residual (A� 1)-nucleon system with an excitation
energy E. Note that in Eq. (12) we neglected Coulomb
interactions and the other (small) isospin-breaking terms
and made the assumption, largely justified in the case
of symmetric closed shell nuclei, that the proton and
neutron spectral functions are identical.

Using the Sokhotski-Plemelj theorem [35] we can
rewrite Eq. (13) as
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Exploiting the fact that H| A�1
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f i and
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Nuclear structure is in the
hadronic tensor:
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where �̃↵(k) is the Fourier transform of the single-
particle wave function

�̃↵(k) =

Z
d3r eik r�↵(r) . (35)

In this work, the SCGF calculations are performed em-
ploying a spherical harmonic-oscillator basis, with fre-
quency ~⌦ = 20 MeV and dimension Nmax = max{2n+
`} = 11.

The SCGF correlated one-body propagator obtained
by solving the Dyson equation of Eq. (30) is used to de-
termine the hole SF of 16O. The results for open shell
nuclei, such as 12C discussed in this work, have been
obtained within the Gorkov’s theory, in which the de-
scription of pairing correlations characterizing open shell
systems is achieved by breaking the particle number sym-
metry [54–56].

C. Inclusion of two-body currents

The inclusion of two-body current operator requires
the generalization of the factorization ansatz of Eq. (9).
Following Refs. [21, 22] and neglecting the contribution of
[h A�1

f |⌦ hp|]|jµ2b| 
A
0 i, the matrix element of the nuclear

current reads

h A
f |j

µ
2b| 

A
0 i !X

k k0

[h A�2
f |⌦ hk k0|] | A

0 iahp p
0
|

X

ij

jµij |k k
0
i . (36)

where |p p0ia = |p p0i� |p0 pi. In infinite matter the corre-
lated nuclear many-body state can be labeled with their
single-particle momenta, implying | A�2

f i = |hh0
i, where

|hh0
i with |h|, |h0

|  kF denotes a 2-hole state of (A� 2)
nucleons. A diagrammatic analysis of the cluster expan-
sion of the overlap �hh

0

kk0 ⌘ h 0|[|kk0i⌦ | hh0i was carried
out by the Authors of Ref. [57]. Their analysis shows
that only unlinked graphs (i.e., those in which the points
reached by the k1, k2 lines are not connected to one other
by any dynamical or statistical correlation lines) survive
in the A ! 1 limit

�hh
0

kk0 = �hk�
h0

k0 (2⇡)3�(3)(h� k)(2⇡)3�(3)(h0
� k0) , (37)

where �hk is the the Fourier transform of the overlap be-
tween the ground state and the one-hole (A� 1)-nucleon
state, the calculation of which is discussed in Ref. [42]

Therefore, using the �(3)-function to perform the inte-
gration over p0 = k+k0+q�p, the pure two-body current
component of the hadron tensor in nuclear matter turns
out to be [21]

Wµ⌫
2b (q,!) =

V

4

Z
dE

d3k

(2⇡)3
d3k0

(2⇡)3
d3p

(2⇡)3
m4

e(k)e(k0)e(p)e(p0)

⇥ PNM
h (k,k0, E)2

X

ij

hk k0|jµij
†
|p p0iahp p

0
|j⌫ij |k k

0
i

⇥ �(! + E � e(p)� e(p0)) . (38)

The normalization volume for the nuclear wave func-
tions V = ⇢/A with ⇢ = 3⇡2k3F /2 depends on the Fermi
momentum of the nucleus, which we take to be kF = 225
MeV. The factor 1/4 accounts for the fact that we sum
over indistinguishable pairs of particles, while the factor
2 stems from the equality of the product of the direct
terms and the product of the two exchange terms after
interchange of indices [58]. The two-nucleon SF entering
the hadron tensor is

PNM
h (k,k0, E) =

Z
d3h

(2⇡)3
d3h0

(2⇡)3
|�hh

0

kk0 |
2�(E + e(h) + e(h0))

⇥ ✓(kF � |h|)✓(kF � |h0
|) . (39)

Consistently with the fact that, in absence of long-range
correlations, the two-nucleon momentum distribution of
infinite systems factorizes according to [59]

n(k,k0) = n(k)n(k0) +O

✓
1

A

◆
, (40)

exploiting the factorization of the two-nucleon overlaps of
Eq. (37), the two-body contribution of the hadron tensor
can be rewritten as

Wµ⌫
2b (q,!) =

V

2

Z
dẼ

d3k

(2⇡)3
dẼ0 d

3k0

(2⇡)3
d3p

(2⇡)3

⇥
m4

e(k)e(k0)e(p)e(p0)
PNM
h (k, Ẽ)PNM

h (k0, Ẽ0)

⇥

X

ij

hk k0|jµij
†
|p p0ihp p0|j⌫ij |k k

0
i

⇥ �(! + Ẽ + Ẽ0
� e(p)� e(p0)) . (41)

In order to make contact with finite systems, we take

PNM
h (k, E) '

k3F
6⇡2

Ph(k, E) (42)

where the hole SF of the nucleus Ph(k, E) is obtained
from either the CBF theory or the SCGF approach.
We are aware that the assumptions made to include

the contribution of two-body currents deserve further in-
vestigations. For instance, the strong isospin-dependence
of short-range correlations, elucidated in a number of re-
cent works [60–62], is not properly accounted for if the
factorization of Eq. (37). In this regard, it has to be men-
tioned that in the present work we do not account for the
interference between one- and two-body currents. While
in the two-nucleon knockout final states this contribution
is relatively small [21, 22], it has been argued that ten-
sor correlations strongly enhance the interference terms
for final states associated single-nucleon knock out pro-
cesses [63]. This is consistent with the Green’s function
Monte Carlo calculations of Refs. [64, 65], in which the
interference between one- and two-body currents domi-
nate the total two-body current contribution.
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where τ = −q2/(4m2). Finally, using the identity

δ
(
ω − e(p) − EA−1

f + EA
0

)

=
∫

dE δ(ω + E − e(p)) δ
(
E + EA−1

f − EA
0

)
, (33)

we can rewrite the hadron tensor as

Wµν(q,ω) =
∫

d3k

(2π )3
dEPh(k,E)

m2

e(k)e(k + q)

×
∑

i

〈k|jµ
i
†|k + q〉〈k + q|j ν

i |k〉

× δ(ω + E − e(k + q)) , (34)

where the factors m/e(k) and m/e(k + q) have to be included
to account for the implicit covariant normalization of the four-
spinors of the initial and final nucleons in the matrix elements
of the relativistic current.

The hole spectral function

Ph(k,E) =
∑

f

∣∣〈ψA
0

∣∣[|k〉 ⊗
∣∣ψA−1

f

〉]∣∣2

× δ
(
E + EA−1

f − EA
0

)
(35)

gives the probability distribution of removing a nucleon with
momentum k from the target nucleus, leaving the residual
(A − 1) system with an excitation energy E. Note that in
Eq. (34) we neglected Coulomb interactions and the other
(small) isospin-breaking terms and made the assumption,
largely justified in the case of closed-shell nuclei, that the
proton and neutron spectral functions are identical.

Rewriting the nuclear matrix element as

[ 〈
ψA−1

f

∣∣ ⊗ 〈k|
]∣∣ψA

0

〉
=

∑

α

Yk
α(̃α(k)

=
∑

α

(̃α(k)
〈
ψA−1

f

∣∣aα

∣∣ψA
0

〉
, (36)

we recover the more familiar expression of the spectral function
written as the imaginary part of the Green’s function describing
the propagation of a hole state

Ph(k,E) = 1
π

∑

αβ

(̃∗
β(k)(̃α(k)

× Im
〈
ψA

0

∣∣a†
β

1
E + (H − EA

0 ) − iε
aα

∣∣ψA
0

〉
. (37)

In the kinematical region in which the interactions between
the struck particle and the spectator system cannot be ne-
glected, the IA results have to be modified to include the effect
of FSI. Following Refs. [19,20], the multiple scatterings that
the struck particle undergoes during its propagation through the
nuclear medium are taken into account through a convolution
scheme. The IA responses are folded with a function fk+q,

normalized as
∫ +∞

−∞
dωfk+q(ω) = 1 . (38)

The double differential cross section is then given by
(

d2σ

dEe′d,e′

)

FSI

=
∫

d3k

(2π )3
dE

∫
dω′ fk+q(ω − ω′)

× m

e(k)
m

e(k + q)
Ph(k,E)

α2

q4

Ee′

Ee

× Lµν

∑

i

〈k|
(
j

µ
i

)†|k + q〉〈k + q|j ν
i |k〉

× δ(ω′ + E − ẽ(k + q))θ (|k + q| − pF ).

(39)

In the last equation, we modified the energy spectrum of the
struck nucleon

ẽ(k + q) = e(k + q) + U (tkin(k + q)) (40)

by considering the real part of the optical potential U derived
from the Dirac phenomenological fit of Ref. [37]. This allows
to describe the propagation of the knocked-out particle in the
mean-field generated by the spectator system.

IV. RESULTS

Our calculations have been performed using the NNLOsat
chiral interaction [15], which was specifically designed to
accurately describe both binding energies and nuclear radii of
midmass nuclei [38,39]. In Fig. 2 we analyze the convergence
of the SCGF-ADC(3) point-proton densities of 4He with
respect to the oscillator frequency (h̄,) and the size of the
model space (Nmax). The different lines almost superimpose,
indicating that for h̄, ≈ 20 MeV and Nmax ! 11 the cal-
culation converges and no longer depends on the oscillator
parameters. The density calculated from the OpRS is also
displayed. The nice agreement with the SCGF-ADC(3) curves
follows from the requirement that the overlap functions in the

FIG. 2. Point proton densities in 4He, as predicted by NNLOsat.
The dashed (blue) line corresponds to the OpRS derived for Nmax =
11 and h̄, = 20 MeV. The other lines have been obtained using the
SCGF full propagator for Nmax = 11, 13 and h̄, = 20, 22 MeV.
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Two-body diagrams contributing to the axial and 
vector responses 
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tributed in energy and momentum inside the tar-
get [? ].

The formalism based on the impulse approximation
(IA) and realistic hole spectral functions (SFs) allows to
combine a realistic description of the initial state of the
nuclear target with a fully-relativistic interaction vertex
and kinematics [16]. Calculations carried out employing
hole SF computed within the correlated-basis function
(CBF) and the SCGF theories have been extensively val-
idated against electron-nucleus scattering data on a num-
ber of nuclei [17? –19]. The somewhat oversimplified
treatment of final-state interactions (FSI) to which the
struck nucleon undergoes has been corroborated compar-
ing the electromagnetic response functions of 12C from
CBF with those of the GFMC [20].

More recently, the factorisation scheme underlying
IA and the SF formalism has been generalized to in-
clude electromagnetic relativistic meson-exchange two-
body currents (MEC), arising from pairs of interacting
nucleons [21]. Employing nuclear overlaps and consis-
tent SFs obtained within the CBF theory, the authors
of Refs. [22] have analyzed the role of MEC in electron
scattering o↵ 12C. They found that two-body currents
are mostly e↵ective in the “dip” region, between the
quasielastic and the �-production peaks. Their inclu-
sion appreciably improves the agreement between theory
and data.

In this work, we further extend the IA scheme by in-
troducing the MEC relevant for charged-current (CC)
and neutral-current (NC) interactions. We study their
role in neutrino and anti-neutrino scattering o↵ 12C and
16O nuclei, both used as targets in neutrino-oscillation
experiments. We adopt the two-body currents derived
in Ref. [23] from the weak pion-production model of
Ref. [24]. It has been shown that they provide results
consistent with those of Ref. [25], which were also
adopted in the extension of the IA and SF formal-
ism of Ref. [22].

We develop a dedicated code that automatically carries
out the calculation of the MEC spin-isospin matrix ele-
ments, performing the integration using the Metropolis
Monte Carlo algorithm [26]. To validate our implementa-
tion of the two-body currents, we perform a benchmark
calculation of the CC response functions within the rela-
tivistic Fermi gas model, comparing our results with the
findings of Ref. [23].

We consider two nuclear SFs, derived within
the framework of nuclear many-body theory us-
ing the CBF formalism [27] and the self-consistent
Green’s function (SCGF) theory [28]. These two
approaches start from di↵erent, albeit realistic, nuclear
hamiltonians to describe the interactions between pro-
tons and neutrons. Moreover, the approximations in-
volved in the calculations of the hole spectral function
are also peculiar to of each of the two methods. Hence,
a comparison of the cross sections obtained employing
the CBF and the SCGF nuclear SFs helps gauging the
theoretical error of the calculation.

More specifically, we analyze the double-di↵erential
cross sections of 12C and 16O for both CC and NC
transitions for incoming (anti)neutrino energy of 1 GeV
and two values of the scattering angle: ✓µ = 30� and
✓µ = 70�. We also present results for the total CC cross
section for neutrino and anti-neutrino scattering o↵ 12C
as a function of the incoming (anti)neutrino energy. Our
calculations are compared with the experimental data ex-
tracted by the MiniBooNE collaboration [29].
The structure of the nuclear cross section, as well as

its expression in terms of relevant response functions are
reviewed in Section II. Section III is devoted to the de-
scription of the IA, including its extension to account for
a consistent treatment of one- and two-nucleon current
contributions. The CBF theory and SCGF approaches
are also briefly outlined. In Section IV we discuss the
explicit expressions of the relativistic two-body currents
employed, while Section V is dedicated to their numeri-
cal implementation. In Section VI we present our results
and in Section VII we state our conclusions.

II. FORMALISM

The double-di↵erential cross section for ⌫ and ⌫̄ inclu-
sive scattering o↵ a nucleus can be expressed as [30, 31]

⇣ d�

dT 0d cos ✓0

⌘

⌫/⌫̄
=

G2

2⇡

k0

2E⌫

h
L̂CCRCC + 2L̂CLRCL

+ L̂LLRLL + L̂TRT ± 2L̂T 0RT 0

i
, (1)

where G = GF and G = GF cos ✓c for NC and CC pro-
cesses, respectively, with cos ✓c = 0.97425 [32]. The +
(�) sign corresponds to ⌫ (⌫̄) induced reactions. We
adopt the value GF = 1.1803⇥ 10�5 GeV�2, as from the
analysis of 0+ ! 0+ nuclear �-decays of Ref. [33], which
accounts for the bulk of the inner radiative corrections.
With k = (E⌫ ,k) and k0 = (E`,k0) we denote the initial
neutrino and the final lepton four-momenta, respectively,
and ✓ is the lepton scattering angle. Introducing the four-
momentum

Q = k + k0 = (⌦,Q) , Q = (Qx, 0, Qz) (2)

and the momentum transfer

q = k � k0 = (!,q) , q = (0, 0, qz), (3)

the kinematical factors can be conveniently cast in the
form

L̂CC = ⌦2
� q2z �m2

`

L̂CL = (�⌦Qz + !qz)

L̂LL = Qz
2
� !2 +m2

`

L̂T =
Qx

2

2
� q2 +m2

`

L̂T 0 = ⌦qz � !Qz , (4)
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explicit expressions of the relativistic two-body currents
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cal implementation. In Section VI we present our results
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Neutrino Oscillations – next generation experiments

DUNE experiment will measure long base line 
neutrino oscillations to:

- Resolve neutrino mass hierarchy
- Search for CP violation in weak interaction
- Search for other physics beyond SM

Liquid Argon projection chamber is being used.  It will require 
one order of magnitude (20% à 2%) improvement in theoretical 
prediction for  ν-40Ar  cross sections to achieve proper event 
reconstruction.

è Need good knowledge of 40Ar spectral functions and consistent 
structure-scattering theories.
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TABLE I. Uncertainties associated with the presented
Ar(e, e0) cross section. Numbers represent upper limits or
the range for the uncertainties that vary between di↵erent
kinematical regions.

1. Total statistical uncertainty 1.7%–2.9%
2. Total systematic uncertainty 1.8%–3.0%

a. Beam charge & beam energy 0.3%
b. Beam o↵set x&y 0.4%–1.0%
c. Target thickness and boiling e↵ect 0.7%
d. HRS o↵set x&y + optics 0.6%–1.2%
e. Acceptance cut (✓,�,dp/p) 0.6%–2.4%
f. Calorimeter & Čerenkov cuts 0.01%–0.03%
g. Cross section model 1.3%
h. Radiative & Coulomb corrections 1.0%
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FIG. 2. (color online). Comparison of Ar(e, e0) cross section
of Fig. 1, and Ti(e, e0) and C(e, e0) cross sections of Ref. [23],
all in the same kinematics, presented in terms of the ratio
defined by Eq.(4).

reactions. It is apparent that this procedure leads to a
remarkably good description of both shape and normal-
ization of the data in the the quasielastic region. How-
ever, it does not include two-body currents and delta-
excitation mechanisms which are clearly visible in the
region of lower E0 values (i.e. larger energy transfers).

In Fig. 2, we compare the argon data to the titanium
and carbon data of Ref [23], taken in the same kine-
matical setup, corresponding to incident electron energy
2.222 GeV and scattering angle of 15.541 deg. The com-
parison is performed in terms of the ratio defined as

(d2�/d⌦dE0)/[Z�ep + (A� Z)�en] , (4)

where A and Z are the nuclear mass number and
charge, respectively, while �ep and �en denote the elas-
tic electron-proton and electron-neutron cross sections
stripped of the energy-conserving delta function [32].
The results of Fig. 2, showing that the ratios of Eq.(4)
corresponding to argon and titanium are nearly identical
to one another, appear to support the strategy underly-

ing our experiment, aimed at exploiting titanium data to
extract complementary information on nuclear e↵ects in
argon. On the other hand, the di↵erences between the re-
sults for argon and carbon indicate significant di↵erences
in the ground-state properties of these nuclei, which are
relevant in the context of MC simulations for DUNE.

FIG. 3. (color online). Comparison between the scaling func-
tion of the second kind, f( ), obtained from E12-14-012 data
on Ar, Ti, and C. The kF of C is fixed to the value obtained
by Moniz et al. [34] while the data analysis of Ti and Ar
sets kF at 240 MeV and 245 MeV, respectively. The circles
are the Ar data from LNF [11], which turn out to prefer an
inconsistently higher value of kF .

To further elucidate the di↵erences between the argon,
titanium, and carbon cross sections, in Fig. 3, we show
the corresponding scaling functions of the second kind,
f( ), displayed as a function of the dimensionless scal-
ing variable  . The definitions of both f( ) and  in-
volve a momentum scale, which can be loosely interpreted
as the nuclear Fermi momentum, kF [33], providing a
simple parametrization of nuclear e↵ects. The results of
Fig. 3 show that setting the carbon Fermi momentum to
220 MeV—the value resulting from the analysis of Moniz
et al. [34]—scaling of titanium and argon data is observed
for kF = 240 and 245 MeV, respectively. Hence, the scal-
ing analysis confirms the picture emerging from Fig. 2.
For comparison, we also show the scaling function f( )
obtained using the Ar(e, e0) cross section at 700 MeV
and 32 deg, measured at the LNF electron-positron stor-
age ring ADONE using a jet target [11]. It turns out
that scaling of the LNF data is only observed at  ⇡ 0
and prefers a much larger value of the Fermi momentum,
kF=375 MeV, than the one resulting from the analysis of
the JLab data. This inconsistency may well be the result
of the normalization issue that the authors of Ref. [11]
found in their 16O cross section as compared to the previ-
ously measured cross section at Bates Linear Accelerator
Center [35] which was considered as a reference dataset
by the authors of Ref. [11]. A normalization factor of

Spectral function for 40Ar and Ti
Jlab experiment E12-14-012 (Hall A)
Phys. Rev. C 98, 014617 (2018); arXiv:1810.10575 

Ar (e,e’)X
Ti(e,e’)X
C (e,e’)X

40Ar(e,e’p)  and  Ti(e,e’p)  data being analyzed

40Ar

Z=18
N=22

ATi

Z=22
N=24-28

Proton distribution in Ti similar 
to neutron in 40Ar ??
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Spectral function for 40Ar

- Experimental datat now available from Jlab:
H. Dai et al., arXiv:1803.01910/ 1810.10575

- Ab initio simulations based on the ADC(2)
truncation of the N2LO-sat Hamiltoninan

è Want validation of initial state correlation 
before they are implementer in neutrino-40Ar 
simulations
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40Ar(e,e’p)  and  Ti(e,e’p)  data being analyzed
CB, N. Rocco, V. Somà, Phys. Rev. C100, 062501(R) (2019) 

Ti protons contribution 
(‘mix’) is nearly identical 
to neutrons in 40Ar.
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Study of nuclear interactions
from Lattice QCD
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Lattice QCD

8

L=−
1

4
Gμν
a
Ga

μ ν + q̄ γμ (i∂μ − g ta Aμ
a )q−mq̄q

Lattice QCD

gluons U = e 
i a Aµ

on the links

a

L

quarks q
on the sites

4-dim

Euclid

Lattice

Well defined (reguralized)
Manifest gauge invariance 

〈O(q̄ , q ,U )〉

=∫ dU d q̄ d q e−S (q̄ , q ,U )
O(q̄ , q ,U )

=∫ dU detD(U )e−SU (U )
O(D−1(U ))

= lim
N →∞

1

N
∑
i=1

N

O(D−1(Ui))

Vacuum expectation value

 { Ui } : ensemble of gauge conf. U
 generated w/ probability det D(U) e −SU(U)

path integral

quark propagator

Fully non-perturvative
Highly predictive

Slide, courtesy of T. Inoue (YITP talk, Oct. 8th 2015)
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Two-Nucleon HAL potentials in flavour SU(3) symm.

47

Quark mass dependence

● Quark mass dependence of potentials in NN 3S1

● All components get bigger as quark mass decrease.

46

NN potentials from QCD

● Left:  NN potentials in partial waves at the lightest mq.
● Repulsive core & attractive pocket & strong tensor force.
● Similar to phenomenological potentials qualitatively.
● Least χ2 fit of data which give central value of observable.
● Higher orders in velocity expansions are not available yet.

We restrict us to these leading order potentials.

● Right:  Quark mass dependence of V(r) of NN 1S0.
● Potentials become stronger as mq decrease.

e.g.  AV18

Quark mass dependence of V(r) for NN partial 
wave (1S0, 3S1, 3S1-3D1)

è Potentials become stronger mπ
as decreases.

Prog. Theor. Exp. Phys. 01A105 (2012)
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Results for binding
E
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HALQCD @
mπ= 469 MeV

experiment

-2.2 MeV

…unbound…

NB: All calculations assuming 
spherical wave functions…

C. McIlroy, CB, et al., Phys. Rev. C97, 021303(R) (2018) 
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FIG. 2. (Color online) Ground state energy of 4He, 16O and 40Ca as a function of the harmonic oscillator frequency, ~⌦, and the model space
size, Nmax. Symbols mark the results for the HAL469 potential from full self-consistent calculations in the G-matrix plus ADC(3) approach.

Results. The one-body propagators of 4He, 16O and
40Ca were calculated in spherical harmonic oscillator spaces
of di↵erent frequencies, ~⌦, and increasing sizes up to
Nmax=max{2n + `}=11 (and Nmax  9 for 40Ca). A G-matrix
was calculated for each frequency and model space and then
it was used to derive the static interactions of Eq. (5). We sub-
tracted the kinetic energy of the center of mass according to
Ref. [50] and calculated the intrinsic ground state energy from
g(!) using the Koltun sum rule. The same lattice simulation
setup used to generate the HAL469 interaction gives a nucleon
mass of mN=1161.1 MeV/c2 in addition to the pseudo-scalar
mass of MPS=469 MeV/c2. Thus, we employed this value of
mN in all the kinetic energy terms.

The exact binding energy of 4He for HAL469 is known
to be 5.09 MeV [51] and can be used to benchmark our ap-
proach. Fig. 2 displays the ground state energies calculated
with the G-matrix plus ADC(3) method. The resummation
of ladder diagrams outside the model space tames ultravio-
let corrections and we find that the infrared convergence dis-
cussed in Ref. [52] applies very well for large oscillaltor fre-
quencies. From calculations up to ~⌦=50 MeV, we estimate
a converged binding energy of 4.80(3) MeV for 4He, where
the error corresponds to the uncertainties in the extrapolation.
All results for 4He are summarised in Tab. I where we also list
BHF calculations done with the same gap choice and methods
of Ref. [22]. This suggests that the BHF method can overes-
timate the binding energy for HAL469 even sizeably. On the
other hand, the full inclusion of long-range e↵ects in ADC(3)

E
A

0 [MeV] 4He 16O 40Ca
BHF [22] -8.1 -34.7 -112.7
G(!) + ADC(3) -4.80(0.03) -17.9 (0.3) (1.8) -75.4 (6.7) (7.5)
Exact Result [51] -5.09 – –
Separation into 4He clusters: -2.46 (0.3) (1.8) 24.5 (6.7) (7.5)

TABLE I. Ground state energies of 4He, 16O and 40Ca
at MPS=469 MeV/c2 obtained from the HAL469 interaction.
‘G(!)+ADC(3)’ are the results of the present work and are compared
to BHF and exact results. The last line is the breakup energy for split-
ting the system in 4He clusters (of total energy A/4⇥5.09 MeV).

deviates from the exact solution by less than 10%. Since the
SCGF approach resums linked diagrams, and thus is size ex-
tensive, one should expect that similar errors will apply for
larger isotopes. Fig. 2 also demonstrates that 16O and 40Ca
convergence similarly to 4He. Their extrapolated ground state
energies are also given in Tab. I, where the first error is the un-
certainties in the model space extrapolation [52]. The second
error corresponds to many-body truncations and we estimate
it to be 10% based on the finding for 4He. The SCGF results
are sensibly less bound than our previous BHF results [22].
This pattern is completely analogous to the case of 4He and
we interpret it as a limitation of BHF theory.

A key feature of our calculations is the use of an har-
monic oscillator space, which e↵ectively confines all nucle-
ons. The last line Tab. I reports the deduced breakup ener-
gies for separating the computed ground states into infinitely
distant 4He clusters. The 16O is unstable with respect to 4-↵
break up, by ⇡2.5 MeV. Allowing an error in our binding en-
ergies of more than 10% could make oxygen bound but only
very weakly. This is in contrast to the experimental results, at
the physical quarks masses, where the 4-↵ breakup requires
14.4 MeV. On the other hand, 40Ca is stable with respect to
breakup in ↵ particles by ⇡24 MeV. We expect that these
observations are rather robust even when we consider the
(LQCD) statistical errors in the HAL469 interaction. While
such statistical fluctuations introduce additional ⇠10% errors
on binding energies [22], they are expected to be strongly cor-
related among 4He, 16O and 40Ca. Hence, for QCD in the
SU(3) limit at MPS=469 MeV/c2, we find that the deuteron is
unbound [20] and 16O is only just slightly above the threshold
for ↵ breakup, while 4He and 40Ca are instead bound. The
HAL469 interaction has the lowest MPS value among those
considered in Refs. [19, 20], while from Ref. [21] we know
that it is the only one saturating nuclear matter (although not
at the physical saturation point). Moreover, we have tested
that SCGF attempts at calculating asymmetric isotopes, like
28O, predict strongly unbound systems even for HAL469. All
these results together suggest that, when lowering of the pion
mass toward its physical value, closed shell isotopes are cre-
ated at first around the traditional magic numbers. This hy-
pothesis should also be seen in the light of the limitations in
the present HAL469 Hamiltonian, which was built to include
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Quantum MC calculations for Ys
• AV4’ + UIX with phenomenological hypernuclear forces requires large ΛNN 3-baryon force

• Physical mass now under reach (mπ≈ 145 MeV)  for hyperons

• HALQCD  ΛN 3-baryon force is already very close to experiment 

: phenomenological NΛ potential

: phenomenological NΛ + NNΛ potential

: HALQCD NΛ potential
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Abstract

We compute the hyperon separation energy for ⇤ hypernuclei using realistic phenomenological nuclear interactions in the two-
nucleon sector and the hyperon-nucleon HALQCD potential at pion mass m⇡ ⇡ 145 MeV. The ⇤N potential and phase shifts
predicted by HALQCD compare reasonably well with other phenomenological and chiral e↵ective field theory models available
to date. We find that including ⇤N interactions only (and neglecting virtual ⌃ formation) the separation energies are generally
underestimated. We estimate the e↵ect of including the ⌃ hyperon and find that this sensibly improves the separation energies,
bringing them very close to the empirical values.
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1. Introduction

Hypernuclear review [1]. Quantum Monte Carlo review [2].
Quantum Monte Carlo and strange systems [3–5].

2. Hamiltonian

We work under the assumption that the dynamics of nuclei
and single-⇤ hypernuclei can be modeled by the following non-
relativistic Hamiltonian

H = �
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where Latin indexes {i, j, k} label nucleons, and ⇤ is used for
the ⇤ hyperon.

The Argonne v
0

4 (AV4’) nucleon-nucleon (NN) interaction
is expressed as

vi j =
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p=1,4
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p(ri j)O

p
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. (2)

The central component of the Urbana IX (UIXc) three-nucleon
(3N) potential is defined as
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cyc
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2(m⇡ri j) T

2(m⇡rik) , (3)

⇤Corresponding Author.
Email address: lonardoni@nscl.msu.edu (D. Lonardoni)

where AR = 0.004 MeV, T (x) is the normal Yukawa tensor
function with cuto↵ c = 2.1 fm�2 and m⇡ is the average pion
mass.

The hyperon-nucleon (YN) potential is also written as a sum
of spin-dependent operators multiplied by the corresponding ra-
dial function

vi⇤ =
X

p=c,�,t

v
p(ri⇤)Op

i⇤
. (4)

3. Method

We solve the many-body Schrödinger equation of nuclei
and single-⇤ hypernuclei employing the auxiliary field di↵u-
sion Monte Carlo (AFDMC) method [6]. The starting point of
this approach is the trial wave function, which is assumed to
factorizes into long- and short-range components. For the core
nucleus, this is expressed as

hX| T i = hX|

0
BBBBBB@
Y

i< j<k

Ui jk

1
CCCCCCA

0
BBBBBB@
Y

i< j

Fi j

1
CCCCCCA |�J⇡,Jz,Tz

i , (5)

where X = {x1, . . . , xA} and the generalized coordinate xi ⌘

{ri, si} represents both the position R = {r1, . . . , rA} and the
spin-isospin coordinates S = {s1, . . . , sA} of the A nucleons,
with si = {�i, ⌧i}. The mean-field part of the wave function
has the same parity, total angular momentum J, Jz, and the total
charge Tz of the core nucleus of interest. For the closed-shell
nuclei analyzed in this work – 4He, 16O, and 40Ca – we utilize
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i⇤
. (4)

3. Method

We solve the many-body Schrödinger equation of nuclei
and single-⇤ hypernuclei employing the auxiliary field di↵u-
sion Monte Carlo (AFDMC) method [6]. The starting point of
this approach is the trial wave function, which is assumed to
factorizes into long- and short-range components. For the core
nucleus, this is expressed as
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i , (5)

where X = {x1, . . . , xA} and the generalized coordinate xi ⌘

{ri, si} represents both the position R = {r1, . . . , rA} and the
spin-isospin coordinates S = {s1, . . . , sA} of the A nucleons,
with si = {�i, ⌧i}. The mean-field part of the wave function
has the same parity, total angular momentum J, Jz, and the total
charge Tz of the core nucleus of interest. For the closed-shell
nuclei analyzed in this work – 4He, 16O, and 40Ca – we utilize
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takes a form suggested by perturbation theory

Ui jk = 1 � ✏
X

cyc

T
2(⇠m⇡ri j) T

2(⇠m⇡rik) , (9)

where the scaling factor ⇠ and the small parameter ✏ are to be
determined variationally.

The generalization of the above framework to single-⇤ hy-
pernuclei is facilitated by the fact that the Hamiltonian of Eq. (1)
does not mix nuclear and hypernuclear degrees of freedom. As
a consequence, the nucleons and the ⇤ particle can be treated
as distinct particles, and the mean-field component of the trial
wave function factorizes as [4]

hX|�J⇡,Jz,Tz
i = A

⇥
�↵1 (x1) . . . �↵A

(xA)
⇤

JJz
⇥ �↵⇤ (x⇤) , (10)

where x⇤ denotes the generalized coordinate of the ⇤ hyperon,
and �↵⇤ (x⇤) = Rnl(r⇤) Yllz

(r̂⇤) �ssz
(�⇤) is its single-particle or-

bital. The two-body correlation between the ⇤ particle and the
nucleons is encoded in the additional Jastrow function Fi� =
f

c(ri�), that is determined analogously to f
c(ri j) by solving a

Schrödinger-like equation for v̄i� � �. Hence, for the hypernu-
clei considered in this work, we utilize the following trial wave
function
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where this time X = {x1, . . . , xA�1; x⇤}.
The variational parameters entering the trial wave function

are determined exploiting the variational principle

ET =
h T |H| T i

h T | T i
� E0 , (12)

where E0 is the true ground-state energy. The energy minimiza-
tion is e�ciently carried out employing the stochastic reconfig-
uration algorithm []. Some care must be taken when optimizing
the radial wave function associated to �↵⇤ (x⇤). Analogously to
variational Monte Carlo calculations of light nuclei, the energy
minimization could potentially yield rms-radii that are too large
compared to experiments. To control this pathological behav-
ior, we minimize the di↵erence between the variational and the
di↵usion Monte Carlo estimates of the radii [7].

The AFDMC relies on the imaginary-time propagation to
filter out the lowest-energy state from the initial trial wave func-
tion

| 0i = e
�(H�E0)⌧

| T i . (13)

The direct computation of the propagator exp[�(H � E0)⌧] for
arbitrary ⌧ is typically not possible, except for very simple Hamil-
tonians. For small imaginary times �⌧ = ⌧/N with N large, the
calculation is tractable, and the full propagation can be broken
down through the following path integral
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⇥ hX1|e
�(H�E0)�⌧

|X0ihX0| T i . (14)

Employing the Suzuki-Trotter decomposition to order �⌧3, the
short-time propagator factorizes as
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In the above equation, V is the sum of the NN, 3N, and YN po-
tentials, and T is the nonrelativistic kinetic energy, which yields
the free propagator

G0(Xi+1, Xi, �⌧) = hXi+1|e
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where R and S denote the spatial and spin coordinates, respec-
tively. It is convenient to split V in a spin/isospin-dependent
VS D and spin/isospin-independent VS I contributions. The lat-
ter simply contributes to the total weight of the Monte Carlo
configuration – we will return on this point later on – whilst
some care is needed to treat VS D. The favorable scaling of the
AFDMC method with the number of nucleons is made possible
by the use of a a spin-isospin basis given by the outer product
of single-nucleon spinors

|S i = |s1i ⌦ |s2i ⌦ · · · ⌦ |sA�1i ⌦ |s⇤i . (17)

Quadratic spin-isospin operators contained in VS D can connect
a single spin-isospin state |sii to all possible |si+1i states. In or-
der to preserve the single-particle representation, the short-time
propagator is linearized utilizing the Hubbard-Stratonovich trans-
formation

e
��O2�⌧/2 =

1
p

2⇡

Z
1

�1

dx e
�x

2/2
e

x

p
���⌧O , (18)

where x are the auxiliary fields. In the nucleonic sector, the con-
nection between the operatorsO and the spin/isospin-dependent
terms of the nuclear potential has been extensively discussed in
several works [6, 7], and will not be repeated here. However, it
is instructive to obtain the operators O associate to the YN in-
teractions. The sum of the spin-dependent terms of the YN po-
tential V
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where we used the property of the Pauli matrix �↵ 2
i
= �↵ 2

⇤
= 1.

The second term in the square brackets is purely central and
can be safely added to VS I to be treated as a weight of the
Monte Carlo configuration. On the other hand, the Hubbard-
Stratonovich transformation of Eq. (18) is necessary to treat the
first term
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where this time X = {x1, . . . , xA�1; x⇤}.
The variational parameters entering the trial wave function

are determined exploiting the variational principle
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where E0 is the true ground-state energy. The energy minimiza-
tion is e�ciently carried out employing the stochastic reconfig-
uration algorithm []. Some care must be taken when optimizing
the radial wave function associated to �↵⇤ (x⇤). Analogously to
variational Monte Carlo calculations of light nuclei, the energy
minimization could potentially yield rms-radii that are too large
compared to experiments. To control this pathological behav-
ior, we minimize the di↵erence between the variational and the
di↵usion Monte Carlo estimates of the radii [7].

The AFDMC relies on the imaginary-time propagation to
filter out the lowest-energy state from the initial trial wave func-
tion

| 0i = e
�(H�E0)⌧

| T i . (13)

The direct computation of the propagator exp[�(H � E0)⌧] for
arbitrary ⌧ is typically not possible, except for very simple Hamil-
tonians. For small imaginary times �⌧ = ⌧/N with N large, the
calculation is tractable, and the full propagation can be broken
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short-time propagator factorizes as

G(Xi+1, Xi, �⌧) = hXi+1|e
�(H�E0)�⌧

|Xii

' hXi+1|e
�V

�⌧
2 e
�T�⌧

e
�V

�⌧
2 |Xii . (15)

In the above equation, V is the sum of the NN, 3N, and YN po-
tentials, and T is the nonrelativistic kinetic energy, which yields
the free propagator
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where R and S denote the spatial and spin coordinates, respec-
tively. It is convenient to split V in a spin/isospin-dependent
VS D and spin/isospin-independent VS I contributions. The lat-
ter simply contributes to the total weight of the Monte Carlo
configuration – we will return on this point later on – whilst
some care is needed to treat VS D. The favorable scaling of the
AFDMC method with the number of nucleons is made possible
by the use of a a spin-isospin basis given by the outer product
of single-nucleon spinors
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Quadratic spin-isospin operators contained in VS D can connect
a single spin-isospin state |sii to all possible |si+1i states. In or-
der to preserve the single-particle representation, the short-time
propagator is linearized utilizing the Hubbard-Stratonovich trans-
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where x are the auxiliary fields. In the nucleonic sector, the con-
nection between the operatorsO and the spin/isospin-dependent
terms of the nuclear potential has been extensively discussed in
several works [6, 7], and will not be repeated here. However, it
is instructive to obtain the operators O associate to the YN in-
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where we used the property of the Pauli matrix �↵ 2
i
= �↵ 2

⇤
= 1.

The second term in the square brackets is purely central and
can be safely added to VS I to be treated as a weight of the
Monte Carlo configuration. On the other hand, the Hubbard-
Stratonovich transformation of Eq. (18) is necessary to treat the
first term

e
�

1
2 Ai↵,⇤�(�↵i +�

�
⇤

)2�⌧ =

1
p

2⇡

Z
1

�1

dx e
�x

2/2
e

x

p
�Ai↵,⇤��⌧ (�↵

i
+��

⇤
) . (20)

3

Diffusion Monte Carlo:

AFDMC:

takes a form suggested by perturbation theory
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Future application for Ys in nuclei now possible
• AV4’ + UIX requires very large with phenomenological hypernuclear forces requires large ΛNN 3-baryon force

• Physical mass now under reach (mπ≈ 145 MeV)  for hyperons

• HALQCD  ΛN 3-baryon force is already very close to experiment 

D. Lonardoni, A. Lovato, CB, T. Inoue, HALQCD coll

The e�ciency of the AFDMC is drastically improved imple-
menting an importance sampling technique in both the spatial
coordinates and spin-isospin configurations. To this aim, the
propagator of Eq. (15) is modified as

G
I(Xi+1, Xi, �⌧) = G(Xi+1, Xi, �⌧)

 I(Xi+1)
 I(Xi)

, (21)

where the importance-sampling function is typically taken to
be  I(X) =  T (X). At each time step, the walkers are prop-
agated sampling a 3A-dimensional gaussian vector to shift the
spatial coordinates and generating a set of auxiliary fields X
from Gaussian distributions. To remove the spurious linear
terms coming from the exponential of both Eqs. (16) and (18),
we consider four possible moves, obtained by separately flip-
ping the sign of the spatial moves and spin-isospin rotations.
The corresponding weights are

wi =
 I(±Ri+1, S i+1(±X))

 I(Ri, S i)
. (22)

Only one of these four configurations is kept and further prop-
agated in imaginary time. This is done according to a heat-
bath sampling among the four normalized weights wi/W, with
W =

P4
i=1 wi/4 being the cumulative weight. The latter is then

rescaled by

W ! We
�[VS I (Ri)/2+VS I (Ri+1)/2�ET ]�⌧ , (23)

and associated to this new configuration for branching and com-
puting observables. This “plus and minus” algorithm, intro-
duced in the AFDMC in Ref [? ], significantly improves the
stability of the algorithm, as it reduces the dependence of the
results on the central correlation function and on �⌧. Expecta-
tion values of operators that commute with the Hamiltonian are
estimated during the imaginary-time propagation as

hO(⌧)i =
h T |O| (⌧)i
h T | (⌧)i

=

P
Xi
h T (Xi)|O| (⌧, Xi)i/ I(Xi)P

Xi
h T (Xi)| (⌧, Xi)i/ I(Xi)

.

(24)

To alleviate the sign problem, as done in reference [8], we
implement an algorithm similar to the constrained-path approx-
imation [? ], but applicable to complex wave functions and
propagators. The weights wi of Eq. (22) are evaluated with

 I(Xi+1)
 I(Xi)

! Re
(
 I(Xi+1)
 I(Xi)

)
, (25)

and they are set to zero if the ratio is negative. Unlike the fixed-
node approximation, which is applicable for scalar potentials
and for cases in which a real wave function can be used, the
solution obtained from the constrained propagation is not a rig-
orous upper-bound to the true ground-state energy [? ]. To re-
move the bias associated with this procedure, the configurations
obtained from a constrained propagation are further evolved us-
ing the following positive-definite importance sampling func-
tion [7? ]

 I(X) =
���Re{ T (X)}

��� + ↵
���Im{ T (X)}

��� , (26)

where we typically take 0.1 < ↵ < 0.5. Along this uncon-
strained propagation, the expectation value of the energy is es-
timated according to Eq. (24). The asymptotic value is found
by fitting the imaginary-time behavior of the unconstrained en-
ergy with a single-exponential function, as in reference [9].
Unconstrained propagations have been performed in the latest
AFDMC studies of atomic nuclei [7, 10] and infinite nucleonic
matter [11, 12].

4. Results
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Figure 3: ⇤ separation energies.

Table 1: ⇤ separation energies (in MeV) for di↵erent hypernuclei with the hy-
peron in di↵erent single-particle states. Second column reports the AFDMC
results using the original HALQCD96 ⇤N potential. Third column shows the
results for the modified HALQCD96 ⇤N potential (see text for details). In the
last column, the available experimental data [] are reported.

A

⇤Z J
⇡ (state) HALQCD96 HALQCD96* Exp

5
⇤

He 1/2+ (s) 0.21(5) 1.02(3) 3.12(2)
16
⇤

O 1� (s) 9.5(5) 13.5(2) 13.4(4)
2+ (p) �1.3(2) 0.5(1) 2.5(2)

40
⇤

Ca 2+ (s) 21.0(5) 26.8(5) 19.3(1.1)
3� (p) 9.3(6) 13.7(6) 11.0(5)

5. Summary
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