Ab Initio Computations of Ground States and Optical Potentials in Nuclei

Carlo Barbieri

Current Status of low-energy nuclear physics

Composite system of interacting fermions
Binding and limits of stability
Coexistence of individual and collective behaviors

Experimental
programs
RIKEN, FAIR, FRIB... Self-organization and emerging phenomena

Current Status of low-energy nuclear physics

Composite system of interacting fermions Binding and limits of stability
Coexistence of individual and collective behaviors
Experimental programs RIKEN, FAIR, FRIB, ISAC...
Self-organization and emerging phenomena EOS of neutron star matter

Extreme mass
II) Nuclear correlations

Fully known for stable isotopes
[C. Barbieri and W. H. Dickhoff: Prog. Part. Nucl. Phys 52,377 (2004)]
Neutron-rich nuclei; Shell evolution (far from stability)

Unstable nuclei

neutrons
I) Understanding the nuclear force QCD-derived; 3-nucleon forces (3NFs)
First principle (ab-initio) predictions

- ~3,200 k
- ~7,000

Nature 473, 25

- Correlati Tests of the standard model in full fol Other fermionic systems:
III) Interdisciplinary character Astrophysics
ultracold gasses; molecules;

Reach of ab initio methools across the nuclear chart

○ "Exact" approaches

- Since 1980's
- Monte Carlo, CI, ...
- Factorial scaling

๑ Approximate approaches for open-shells

- Since 2010's
- GGF, BCC, MR-IMSRG
- Polynomial scaling

Key developments in SCGF:
[V. Somà, Front. Phys. 8, 340 (2020)]
Dyson ADC(2-5)
Schirmer 1983 (formalism)
Particle-vibration coupling, FRPA(3) CB 2000, 2007

Gorkov ADC(2): open shells!
Somà 2011, 2013
3-nucleon forces basic formalism
Carbone, Cipollone 2013
Raimondi 2018
Gorkov ADC(3) and higher orders (automatic)
Raimoindi, Arthuis 2019
Deformation, Symmetry restoration ???

THE FUTURE OF NUCLEAR STRUCTURE: CHALLENGES AND OPPORTUNITIES IN THE MICROSCOPIC DESCRIPTION OF NUCLEI

EDITED BY: Luigi Coraggio, Saori Pastore and Carlo Barbieri PUBLISHED IN: Frontiers in Physics
\$frontiers Research Topics
Editors: L. Coraggio, S. Pastore, CB

FRONTIERS topical review (doi: 10.3389/fphy.2020.626976) :
H. Hergert, Frontiers in Phys. 8, 379 (2020)
V. Somà, Frontiers in Phys. 8, 340 (2020)

The FRPA Method in Two Words

Particle vibration coupling is the main mechanism driving the redistribution and fragmentation of particle strength-expecially in the quasielastic regions around the Fermi surface...

"Extended" Hartree Fock

- A complete expansion requires all types of particle-vibration coupling
...these modes are all resummed exactly and to all orders in a ab initio many-body expansion.
-The Self-energy $\Sigma^{\star}(\omega)$ yields both single-particle states and scattering

Self-Consistent Green's Function Approach

INFN

Realistic nuclear forces form Chiral EFT

Chiral EFT for nuclear forces:

(3NFs arise naturally at N2LO)

K. Hebeler et al., Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)

See also:
A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) INFN

Neutron spectral function of Oxygens

A. Cipollone, CB, P. Navrátil, Phys. Rev. C 92, 014306 (2015); Phys. Rev. Lett. 111, 062501 (2013)

Neutron quasiparticle energies

UNIVERSITÀ DEGLI STUDI DI MILANO
DIPARTIMENTO DI FISICA

$N 3 L O(500)+n / n 3 N F$

N3LO-Inl: a second-generation Chiral EFT Hamiltonian
Computations w/ SCGF - Gorkov-ADC(2)

V. Somà, P. Navrátil, F. Raimondi, CB, T. Duguet, Phys Rev C101, 014318 (2020); Eur. Phys. J. A57, 135 (2021)

Bubble nuclei... ${ }^{34}$ Si prediction

Duguet, Somà, Lecuse, CB, Navrátil, Phys.Rev. C95, 034319 (2017)

- ${ }^{34} \mathrm{Si}$ is unstable, charge distribution is still unknown
- Suggested central depletion from mean-field simulations
- Ab-initio theory confirms predictions
- Other theoretical and experimental evidence:

Phys. Rev. C 79, 034318 (2009),
Nature Physics 13, 152-156 (2017).
Validated by charge distributions and neutron quasiparticle spectra:

$d_{3 / 2}-s_{1 / 2}$ inversion in K isotopes and bubbles at $N=28$

Papuga et al., PRL110, 172503 (2013); PRC90, 034321 (2014)
RIKEN, SEASTAR coll., Phys. Lett. B802 135215 (2020)

V. Somà, et al., Phys. Rev. C101, 014318 (2020)

Electron-Ion Trap colliders...

First ever measurement of charge radii through electron scattering with and ion trap setting that can be used on radioactive isotopes !!
K. Tsukada et al., Phy rev Lett 118, 262501 (2017)

Charge density for Sn and Xe isotopes

P. Arthuis, CB, M. Vorabbi, P. Finelli, Phys. Rev. Lett. 125, 182501 (2020)

Nuclear Density Functional Theory

PHYSICAL REVIEW C 104, 024315 (2021)

Nuclear energy density functionals grounded in ab initio calculations
F. Marino $\oplus,{ }^{1,2,{ }^{*}}$ C. Barbieri $\odot,{ }^{1,2}$ A. Carbone, ${ }^{3}$ G. Colò,1,2 A. Lovato $\oplus^{4,5}$ F. Pederiva, ${ }^{6,5}$ X. Roca-Maza $\odot,{ }^{1,2}$ and E. Vigezzi \oplus^{2}
${ }^{1}$ Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, 20133 Milano, Italy
${ }^{2}$ Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy
Istitutn Natinnalo di Fisica Nucloaro_CNAF Vialo Carlo Rorti Pichat 6/9 40177 Rolnona Italv
DFT is in principle exact - but the energy density functional (EDF) is not known
For nuclear physics this is even more demanding: need to link the EDF to theories rooted in QCD!
Machine-learn DFT functional on the nuclar equation of state

Benchmark in finite systems

Ab initio optical potentials from propagator theory

Relation to Fesbach theory:

Mahaux \& Sartor, Adv. Nucl. Phys. 20 (1991)
Escher \& Jennings Phys. Rev. C66, 034313 (2002)
Previous SCGF work:
CB, B. Jennings, Phys. Rev. C72, 014613 (2005)
S. Waldecker, CB, W. Dickhoff, Phys. Rev. C84, 034616 (2011)
A. Idini, CB, P. Navrátil, Phys. Rv. Lett. 123, 092501 (2019)
M. Vorabbi, CB, et al., in preparation

Microscopic optical potential

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Nuclear self-energy $\Sigma^{\star}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \varepsilon\right)$:

- contains both particle and hole props.
- it is proven to be a Feshbach opt. pot \rightarrow in general it is non-local !

Elastic nucleon nucleus scattering

[^0]DIPARTIMENTO DI FISICA
M. Vorabbi et al. - in preparation

Microscopic optical potential

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Nuclear self-energy $\Sigma^{\star}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \varepsilon\right)$:

- contains both particle and hole props.
- it is proven to be a Feshbach opt. pot \rightarrow in general it is non-local !

Solve scattering and overlap functions directly in momentum space:

$$
\begin{aligned}
& \Sigma^{\star l, j}\left(k, k^{\prime} ; E\right)=\sum_{n, n^{\prime}} R_{n l}(k) \Sigma_{n, n^{\prime}}^{\star l, j} R_{n l}\left(k^{\prime}\right) \\
& \frac{k^{2}}{2 \mu} \psi_{l, j}(k)+\int \mathrm{d} k^{\prime} k^{\prime 2} \Sigma^{\star l, j}\left(k, k^{\prime} ; E_{c . m .}\right) \psi_{l, j}\left(k^{\prime}\right)=E_{c . m .} \psi_{l, j}(k)
\end{aligned}
$$

Low energy scattering - from SCGF

[A. Idini, CB, Navratil,
Benchmark with NCSM-based scattering.

Scattering from mean-field only:

Low energy scattering - from SCGF

[A. Idini, CB, Navratil,
Benchmark with NCSM-based scattering.
Phys. Rev. Lett. 123, 092501 (2019)]

Scattering from mean-field only:

Full self-energy from SCGF:

Role of intermediate state configurations (ISCs)

[A. Idini, CB, Navratil,
Phys. Rev. Lett. 123, 092501 (2019)]

High order configurations, or ADC($n \gg 3$), to be critical for fully ab initio optical potentials

$$
\begin{aligned}
& \qquad \Sigma_{\alpha \beta}^{\star}(\omega)=\Sigma_{\alpha \beta}^{(\infty)}+\sum_{i, j} \mathbf{M}_{\alpha, i}^{\dagger}\left[\frac{1}{E-\left(\mathbf{K}^{>}+\mathbf{C}\right)+i \Gamma}\right]_{i, j} \mathbf{M}_{j, \beta}+\sum_{r, s} \mathbf{N}_{\alpha, r}\left[\frac{1}{E-\left(\mathbf{K}^{<}+\mathbf{D}\right)-i \Gamma}\right]_{r, s} \mathbf{N}_{s, \beta}^{\dagger} \\
& \text { TÀ DEGLI STUDI DI MILANO } \\
& \text { ENTO DI FISICA }
\end{aligned}
$$

Current challenges:

- Pushing ab-initio methods to medium energies - not just g.s.
- Poor description of correlations at intermediate energies...
\rightarrow Need for an efficient sampling of collective configurations and diagrammatic expansion.
- C.O.M. problems ...maybe not so critical at large A.

The FRPA Method in Two Words

Particle vibration coupling is the main mechanism driving the redistribution and fragmentation of particle strength-expecially in the quasielastic regions around the Fermi surface...

"Extended" Hartree Fock

- A complete expansion requires all types of particle-vibration coupling
...these modes are all resummed exactly and to all orders in a ab initio many-body expansion.
-The Self-energy $\Sigma^{\star}(\omega)$ yields both single-particle states and scattering

Automatic Diagrammatic Generation (ADG) of the self-energy

Goal: Drawing of self-energy Feynman diagrams and derivation of corresponding algebraic expressions are performed automatically

Background: ADG of the BMBPT expansion (P. Arthuis et al Comp. Phys. Comm. 240, 202 (2019))

Tree structure of B-MBPT diagrams:							
Order		0	1	2	3	4	5
0/2/4-leg vertex	General	1	2	8	59	568	6805
	HFB vacuum	1	1	1	10	82	938
0/2/4/6-leg vertex	General	1	3	23	396	10716	+ 100000
	HFB vacuum	1	2	8	77	5055	+ 100000

G-ADC(2)

G-ADC(3)

G-ADC(N)

Reaching (Gorkov - 3NF - higher ordes...) is a mess
Gorkov at $2^{\text {nd }}$ order and ONL Y N forces:

Gorkov at $3^{r d}$ order and ONLY NN forces:
pp/hh-ladders:

hh-interactions (hh int. among pp ladders!!!)

Electron and v scattering on 40 Ar and Ti

Liquid Argon projection chamber is being used. It will require one order of magnitude ($20 \% \rightarrow 2 \%$) improvement in theoretical prediction for $v-{ }^{40} \mathrm{Ar}$ cross sections to achieve proper event reconstruction.
\rightarrow Need good knowledge of ${ }^{40} \mathrm{Ar}$ spectral functions and consistent structurescattering theories.

HAL-QCD and application for Ys in nuclei now possible

- AV4' + UIX requires very large with phenomenological hypernuclear forces requires large 1 NN 3-baryon force
- Physical mass now under reach ($m_{\pi} \approx 145 \mathrm{MeV}$) for hyperons
- HALQCD \wedge N 3-baryon force is already very close to experiment
quarks q gluons $U=e^{i a A_{\mu}}$ on the sites on the links

```
L/C,
```


Table 1: Λ separation energies (in MeV) for different hypernuclei with the hyperon in different single-particle states. Second column reports whe AFDMC peron : A. results using the original HALQCD96 ΛN potential. Third column shows the results for the modified HALQCD96 ΛN potential (see text for details). In the last column, the available experimental data [] are reported.

${ }_{\Lambda}^{A} \mathrm{Z}$	J^{π} (state)	HALQCD96	HALQCD96*	Exp
${ }_{\Lambda}^{5} \mathrm{He}$	$1 / 2^{+}(s)$	$0.21(5)$	$1.02(3)$	$3.12(2)$
${ }_{\Lambda}^{16} \mathrm{O}$	$1^{-}(s)$	$9.5(5)$	$13.5(2)$	$13.4(4)$
	$2^{+}(p)$	$-1.3(2)$	$0.5(1)$	$2.5(2)$
${ }_{\Lambda}^{40} \mathrm{Ca}$	$2^{+}(s)$	$21.0(5)$	$26.8(5)$	$19.3(1.1)$
	$3^{-}(p)$	$9.3(6)$	$13.7(6)$	$11.0(5)$

summary and outlook

Ab initio applications to structure and reactions are becoming increasingly powerful:

\rightarrow Nuclear forces being advanced (through EFT) and challenges on many-body theory
\rightarrow Systematic applications beyond testing forces and structure becoming available
\& The Self-Consistent Green's Function method SCGF):

ADC(n) and FRPA diagrammatic expansions (particle-vibration coupling)

Automatization of diagram generation and sampling

Applications:

- Mixed Local-Nonlocal cutoffs in chiral interactions (standard WPC)
[Somà, Navratil, Raimondi, CB, Duguet, Phys Rev C101, 014318 (2020); EPJA in press (arXiv:2009.01829)]
- Optical potentials from ab initio
[A. Idini, CB, P. Navratil, Phys. Rev. Lett. 123, 092501 (2019); Vorabbi et al. in prep]
- Reaching A~132 mass
[P. Arthuis, CB, M. Vorabbi, P. Finelli - Phys, Rev, Lett. 125, 182501 (2020)]
- (Hyper)nuclear forces from LQCD [Lonardoni et al. in prep]
- Neutrino Nucleus scattering (@ GeV energies)
[CB, N. Rocco, V. Somà, Phys. Rev. C100, 062501(R) (2019)]

And thanks to my collaborators (over the years...)

E. Vigezzi, G. Colò, X. Roca-Maza, F. Marino, A. Scalesi
A. Cipollone, A. Rios,
A. Idini, P. Arthuis, M. Drissi
V. Somà, T. Duguet, A. Scalesi
Argonne
A. Lovato , N. Rocco

ARIUMF P. Navrártil

C. Giusti
P. Finelli

BRDOKHFNEN
 NATIONAL LABORATORY

M. Vorabbi

Lepton-nucleon cross section

$$
\left(\frac{d \sigma}{d T^{\prime} d \cos \theta^{\prime}}\right)_{\nu / \bar{\nu}}=\frac{G^{2}}{2 \pi} \frac{k^{\prime}}{2 E_{\nu}}\left[\hat{L}_{C C} R_{C C}+2 \hat{L}_{C L} R_{C L}+\hat{L}_{L L} R_{L L}+\hat{L}_{T} R_{T} \pm 2 \hat{L}_{T^{\prime}} R_{T^{\prime}}\right],
$$

Nuclear structure is in the hadronic tensor:

$$
\begin{aligned}
W^{\mu \nu}(\mathbf{q}, \omega)= & \int \frac{d^{3} k}{(2 \pi)^{3}} d E P_{h}(\mathbf{k}, E) \frac{m^{2}}{e(\mathbf{k}) e(\mathbf{k}+\mathbf{q})} \\
& \times \sum_{i}\langle k| j_{i}^{\mu \dagger}|k+q\rangle\langle k+q| j_{i}^{v}|k\rangle \\
& \times \delta(\omega+E-e(\mathbf{k}+\mathbf{q})),
\end{aligned}
$$

$$
\begin{array}{rlrl}
R_{C C} & =W^{00} & R_{T} & =W^{11}+W^{22} \\
R_{C L} & =-\frac{1}{2}\left(W^{03}+W^{30}\right) \\
R_{L L} & =W^{33} & R_{T^{\prime}}=-\frac{i}{2}\left(W^{12}-W^{21}\right),
\end{array} \quad W^{\mu \nu}=\sum_{f}\langle 0| j^{\mu \dagger}|f\rangle\langle f| j^{\nu}|0\rangle \delta\left(E_{0}+\omega-E_{f}\right)
$$

Lepton-nucleon cross section

$$
\left(\frac{d \sigma}{d T^{\prime} d \cos \theta^{\prime}}\right)_{\nu / \bar{\nu}}=\frac{G^{2}}{2 \pi} \frac{k^{\prime}}{2 E_{\nu}}\left[\hat{L}_{C C} R_{C C}+2 \hat{L}_{C L} R_{C L}+\hat{L}_{L L} R_{L L}+\hat{L}_{T} R_{T} \pm 2 \hat{L}_{T^{\prime}} R_{T^{\prime}}\right]
$$

Nuclear structure is in the hadronic tensor:

$$
\begin{aligned}
W^{\mu \nu}(\mathbf{q}, \omega)= & \int \frac{d^{3} k}{(2 \pi)^{3}} d E P_{h}(\mathbf{k}, E) \frac{m^{2}}{e(\mathbf{k}) e(\mathbf{k}+\mathbf{q})} \\
& \times \sum_{i}\langle k| j_{i}^{\mu \dagger}|k+q\rangle\langle k+q| j_{i}^{v}|k\rangle \\
& \times \delta(\omega+E-e(\mathbf{k}+\mathbf{q})),
\end{aligned}
$$

Two-body diagrams contributing to the axial and vector responses
$W_{2 \mathrm{~b}}^{\mu \nu}(\mathbf{q}, \omega)=\frac{V}{2} \int d \tilde{E} \frac{d^{3} k}{(2 \pi)^{3}} d \tilde{E}^{\prime} \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} \frac{d^{3} p}{(2 \pi)^{3}}$
$\times \frac{m^{4}}{e(\mathbf{k}) e\left(\mathbf{k}^{\prime}\right) e(\mathbf{p}) e\left(\mathbf{p}^{\prime}\right)} P_{h}^{\mathrm{NM}}(\mathbf{k}, \tilde{E}) P_{h}^{\mathrm{NM}}\left(\mathbf{k}^{\prime}, \tilde{E}^{\prime}\right)$
$\times \sum_{i j}\left\langle k k^{\prime}\right| j_{i j}^{\mu \dagger}\left|p p^{\prime}\right\rangle\left\langle p p^{\prime}\right| j_{i j}^{\nu}\left|k k^{\prime}\right\rangle$
$\times \delta\left(\omega+\tilde{E}+\tilde{E}^{\prime}-e(\mathbf{p})-e\left(\mathbf{p}^{\prime}\right)\right)$.

Neutrino Oscillations - next generation experiments

DUNE experiment will measure long base line neutrino oscillations to:

- Resolve neutrino mass hierarchy
- Search for CP violation in weak interaction
- Search for other physics beyond SM

Liquid Argon projection chamber is being used. It will require one order of magnitude ($20 \% \rightarrow 2 \%$) improvement in theoretical prediction for $v-40 \mathrm{Ar}$ cross sections to achieve proper event reconstruction.
\Rightarrow Need good knowledge of ${ }^{40} \mathrm{Ar}$ spectral functions and consistent structure-scattering theories.

Spectral function for 40 Ar and Ti

Jlab experiment E12-14-012 (Hall A)
Phys. Rev. C 98, 014617 (2018); arXiv:1810.10575

${ }^{40} \mathrm{Ar}\left(e, e^{\prime} p\right)$ and Ti(e, e'p) data being analyzed
 Z=22

Proton distribution in Ti similar to neutron in ${ }^{40} \mathrm{Ar}$??

Spectral function for 40 Ar

- Experimental datat now available from Jlab:
H. Dai et al., arXiv:1803.01910/1810.10575
- Ab initio simulations based on the $\operatorname{ADC}(2)$ truncation of the N2LO-sat Hamiltoninan
\rightarrow Want validation of initial state correlation before they are implementer in neutrino- ${ }^{40} \mathrm{Ar}$ simulations

Electron and v scattering on 40 Ar and $7 i$

Jlab experiment E12-14-012 (Hall A)

[Phys. Rev. C 98, 014617 (2018)]

${ }^{40} \mathrm{Ar}\left(e, e^{\prime} p\right)$ and $\mathrm{Ti}\left(e, e^{\prime} p\right)$ data being analyzed

Study of nuclear interactions from Lattice QCD

C. Mcllroy, CB et al. Phys. Rev. C97, 021303(R) (2018)
D. Lonardoni et al. - in preparation

In collaboration with:

Lattice QCD

$$
L=-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+\bar{q} \gamma^{\mu}\left(i \partial_{\mu}-g t^{a} A_{\mu}^{a}\right) q-m \bar{q} q
$$

$$
\text { quarks q gluons } U=e^{i a A_{\mu}}
$$

on the sites on the links

Vacuum expectation value

$$
\begin{aligned}
& \langle O(\bar{q}, q, U)\rangle \\
& =\int d U d \bar{q} d q e^{-S(\bar{q}, q, U)} O(\bar{q}, q, U) \\
& =\int d U \operatorname{det} D(U) e^{-S_{U}(U)} O\left(D^{-1}(U)\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} O\left(D^{-1}\left(U_{i}\right)\right) \text { quark propagator integral } \\
& \quad\left\{U_{i}\right\}: \text { ensemble of gauge conf. } U \\
& \quad \text { generated w/ probability det } D(U) e^{-S_{U}(U)}
\end{aligned}
$$

* Well defined (reguralized) * Fully non-perturvative
\star Manifest gauge invariance \star Highly predictive

Two-Nucleon HAL potentials in flavour SU(3) symm.

Quark mass dependence of $V(r)$ for NN partial wave $\left({ }^{1} S_{0},{ }^{3} S_{1},{ }^{3} S_{1}-{ }^{-3} D_{1}\right)$

Potentials become stronger m_{π} as decreases.

Results for binding

INFN
UNIVERSITÀ l
DIPARTIMENTO DI FISICA

Quantum MC calculations for Ys

- AV4' + UIX with phenomenological hypernuclear forces requires large ^NN 3-baryon force
- Physical mass now under reach ($\mathrm{m}_{\pi} \approx 145 \mathrm{MeV}$) for hyperons
- HALQCD 1 N 3-baryon force is already very close to experiment

$$
H=-\frac{\hbar^{2}}{2 m_{N}} \sum_{i} \nabla_{i}{ }^{2}+\sum_{i<j} v_{i j}+\sum_{i<j<k} V_{i j k}-\frac{\hbar^{2}}{2 m_{\Lambda}} \nabla_{\Lambda}^{2}+\sum_{i} v_{i \Lambda}
$$

--O-- : phenomenological $\mathrm{N} \wedge$ potential
---O-- : phenomenological N $\wedge+$ NN \wedge potential : HALQCD N^ potential

Argonne $v_{4}^{\prime}\left(\mathrm{AV}^{\prime}\right)$ nucleon-nucleon ($N N$) interaction

$$
v_{i j}=\sum_{p=1,4} v^{p}\left(r_{i j}\right) O_{i j}^{p}
$$

central component of the Urbana IX (UIX $\left.{ }_{\mathrm{c}}\right) \quad V_{i j k}=A_{R} \sum_{c y c} T^{2}\left(m_{\pi} r_{i j}\right) T^{2}\left(m_{\pi} r_{i k}\right)$
The hyperon-nucleon (YN) potential

$$
v_{i \Lambda}=\sum_{p=c, \sigma, t} v^{p}\left(r_{i \Lambda}\right) O_{i \Lambda}^{p}
$$

Diffusion Monte Carlo:

$$
\left\langle X \mid \Psi_{T}\right\rangle=\langle X|\left(\prod_{i<j<k} U_{i j k}\right)\left(\prod_{i<j} F_{i j}\right)\left(\prod_{i} F_{i \Lambda}\right)\left|\Phi_{J \pi, J_{z}, T_{z}}\right\rangle, \quad\left|\Psi_{0}\right\rangle=e^{-\left(H-E_{0}\right) \tau}\left|\Psi_{T}\right\rangle
$$

$$
\mathrm{AFDMC}: \quad e^{-\lambda O^{2} \delta \tau / 2}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d x e^{-x^{2} / 2} e^{x \sqrt{-\lambda \delta \tau} O}
$$

Future application for Ys in nuclei now possible

- AV4' + UIX requires very large with phenomenological hypernuclear forces requires large ^NN 3-baryon force
- Physical mass now under reach ($m_{\pi} \approx 145 \mathrm{MeV}$) for hyperons
- HALQCD 1 N 3 -baryon force is already very close to experiment

Table 1: Λ separation energies (in MeV) for different hypernuclei with the hyperon in different single-particle states. Second column reports the AFDMC results using the original HALQCD96 ΛN potential. Third column shows the results for the modified HALQCD96 ΛN potential (see text for details). In the last column, the available experimental data [] are reported.

${ }_{\Lambda}^{A} \mathrm{Z}$	J^{π} (state)	HALQCD96	HALQCD96*	Exp
${ }_{\Lambda}^{5} \mathrm{He}$	$1 / 2^{+}(s)$	$0.21(5)$	$1.02(3)$	$3.12(2)$
${ }_{\Lambda}^{16} \mathrm{O}$	$1^{-}(s)$	$9.5(5)$	$13.5(2)$	$13.4(4)$
	$2^{+}(p)$	$-1.3(2)$	$0.5(1)$	$2.5(2)$
${ }_{\Lambda}^{40} \mathrm{Ca}$	$2^{+}(s)$	$21.0(5)$	$26.8(5)$	$19.3(1.1)$
	$3^{-}(p)$	$9.3(6)$	$13.7(6)$	$11.0(5)$

[^0]: UNIVERSITÀ LeGli د I UUI vi MILAINU

