Hadron structure, spectroscopy and exotics at EIC and LHCb: the theory perspective

Jacopo Ferretti

University of Jyvaskyla, Finland

Quinto Incontro Nazionale di Fisica Nucleare INFN 2022 9-11 May 2022, LNGS

Ordinary baryons and mesons

Described in terms of valence quark/ antiquark degrees of freedom

QCD: gauge theory of the strong interaction Its equations cannot be solved in the lowenergy (non-perturbative) regime

Calculation of the hadron spectrum requires alternative approaches:

- 1. Lattice QCD
- **2. Effective field theories**
- 3. Quark models

Quark (potential) model approach

Effective degree of freedom of constituent (valence) quark is introduced

Quark interaction → effective potential (OGE, GBE ...)

OGE potential: Coulomb-like part + linear confining potential + spin forces

$$V(\mathbf{r_1},\mathbf{r_2}) \approx -rac{lpha_{
m s}}{r_{
m 12}} + eta r_{
m 12} + V(\mathbf{S_1},\mathbf{S_2},\mathbf{L_{12}},\mathbf{r_{12}})$$

Lower part of baryon and meson spectra are reasonably well reproduced

Some problems

- 1. baryon missing resonances
- 2. emergence of exotic degrees of freedom?

Example: spectrum of isovector mesons S. Godfrey and N. Isgur, Phys. Rev. D **32**, 189 (1985)

Exotic hadrons

Exotic hadrons: meson and baryon states whose properties cannot be described in terms of q anti-q or qqq degrees of freedom only

Multiquark states:

- 1. Baryons made up of more than 3 valence quarks → pentaquarks or exaquarks
- 2. Mesons made up of more than a quark-antiquark pair → tetraquarks

Hybrid mesons/baryons: hadrons made up of qqq or q anti-q valence quarks plus gluonic degrees of freedom

Glueballs: particles consisting of gluonic degrees of freedom only

Normal baryon

Normal meson

Pentaquark

This section also describes the impact the EIC will have on the study of hadron spectroscopy, in particular in the heavy quark sector. Here, too, the projected high luminosity of the EIC will enable detailed studies of **exotic states** that have recently been observed at other facilities.

Snowmass 2021 (DPF Community Planning Exercise)

April 1, 2022

Substructure of Multiquark Hadrons (White Paper)

 Nora Brambilla^{1,2,3}, Hua-Xing Chen⁴, Angelo Esposito⁵, Jacopo Ferretti⁶, Anthony Francis^{7,8,9}
 Feng-Kun Guo^{10,11}, Christoph Hanhart¹², Atsushi Hosaka¹³, Robert L. Jaffe¹⁴, Marek Karliner^{15,†}, Richard Lebed¹⁶, Randy Lewis¹⁷, Luciano Maiani¹⁸, Nilmani Mathur¹⁹, Ulf-G. Meißner^{12,20}, Alessandro Pilloni^{21,22}, Antonio Davide Polosa¹⁸, Sasa Prelovsek^{23,24}, Jean-Marc Richard²⁵, Verónica Riquer¹⁸, Mitja Rosina^{23,24}, Jonathan L. Rosner²⁶, Elena Santopinto^{27,‡}, Eric S. Swanson²⁸, Adam P. Szczepaniak^{29,30,31}, Sachiko Takeuchi³², Makoto Takizawa³³, Frank Wilczek^{34,35,36,37,38}, Yasuhiro Yamaguchi³⁹, Bing-Song Zou^{10,11,40}.

Exotic meson candidates (hidden-charm sector)

Tetraquarks: bound states of four valence quarks/ antiquarks [R. L. Jaffe, Phys. Rev. D 15, 267 (1977)]

Combine 4 quarks in terms of 2-quark substructures:

- 1. Compact tetraquark model
- 2. Meson-meson molecular model
- 3. Hadro-charmonium model

Possible mixing between (q anti-q) and (q anti-q q anti-q) components: Unquenched quark model (UQM)

Several candidates in the hidden-charm (q anti-q c anti-c) sector

Exotic meson candidates (hidden-charm sector)

State	J ^{PC}	$\mathit{M}_{\mathrm{exp}}$ (MeV)	Γ (MeV)	Observing Process	Experiment
X(3872)	1^{++}	3871.69 ± 0.17	< 1.7	$B^{\pm} ightarrow K^{\pm} \pi^{+} \pi^{-} J/\psi$	Belle
Z _c (3900)	1^{+-}	3886.6 ± 2.4	28.1 ± 2.6	$e^+e^- ightarrow \pi^+\pi^- J/\psi$	BESIII
Y(4008)	$1^{}$	4008 ± 40	226 ± 44	$e^+e^- ightarrow \gamma_{\rm ISR} \pi^+\pi^- J/\psi$	Belle
$Z_c(4020)^{\pm}$	1^{+-}	$\textbf{4024.1} \pm \textbf{1.9}$	13 ± 5	$e^+e^- ightarrow \pi^+\pi^-h_c$	BESIII
X(4140)	1^{++}	4146.8 ± 2.5	19^{+8}_{-7}	$\gamma\gamma ightarrow \phi J/\psi$	CDF
$Z_c(4240)^{\pm}$	0-	$ extsf{4239} \pm extsf{18}^{+ extsf{45}}_{- extsf{10}}$	$220 \pm 47^{+108}_{-74}$	$B^{m 0} ightarrow K^+ \pi^- \psi(2S)$	LHCb
Y(4260)	$1^{}$	$\textbf{4230} \pm \textbf{8}$	55 ± 19	$e^+e^- o \gamma_{\rm ISR} \pi^+\pi^- J/\psi$	BaBar
X(4274)	1^{++}	4273 ⁺¹⁹ -9	$\mathbf{56^{+14}_{-16}}$	$B^+ ightarrow J/\psi \phi K^+$	CDF, LHCb
Y(4360)	$1^{}$	$\textbf{4341} \pm \textbf{8}$	102 ± 9	$e^+e^- ightarrow \gamma_{\rm ISR} \pi^+\pi^-\psi(2S)$	Belle
$Z_c(4430)^{\pm}$	1^+	4478 ⁺¹⁵ -18	${\bf 181 \pm 31}$	$B ightarrow K \pi^{\pm} \psi$ (2 <i>S</i>)	Belle
X(4500)	0 ⁺⁺	4506+16 -19	92 ± 29	$B^+ ightarrow J/\psi \phi K^+$	LHCb
Y(4630)	$1^{}$	4634 ⁺⁸ -7	92^{+40}_{-24}	$e^+e^- ightarrow \Lambda_c^+ \Lambda_c^-$	Belle
Y(4660)	$1^{}$	$\textbf{4643} \pm \textbf{9}$	72 ± 11	$e^+e^- ightarrow \gamma_{\rm ISR} \pi^+\pi^-\psi(2S)$	Belle
X(4700)	0 ⁺⁺	4704^{+17}_{-26}	120 ± 50	$B^+ ightarrow J/\psi \phi K^+$	LHCb

The *X*(3872) [also known as $\chi_{c1}(3872)$]

Discovered by Belle in <i>B</i> meson decays (2003). J ^{PC} = 1 ⁺⁺ quantum numbers; narrow width (< 1 MeV)	
Mass problemExperimental mass is 3871.68 ± 0.17 MeV [PDG]Incompatible with QM predictions $\rightarrow o(3.95 \text{ GeV})$ $X(3872)$ is also very close to D bar-D* threshold	
 X(3872) is thus not a (pure) charmonium state Several interpretations D bar-D* meson-meson molecule Compact tetraquark (c anti-c) core plus 4-quark components (c anti-c u anti u + c anti c d anti d) due to threshold affects 	 To discriminate among the different interpretations: 1. Study of the decay modes 2. Experimental search for new c anti-c mesons to complete the χ_c(2P) multiplet

Experimental discovery of Z_{cs} tetraquarks

 $Z_{cs}(3985)^-$ (*c* anti-*c s* anti-*u*) was discovered by BESIII [Phys. Rev. Lett. 126, 102001 (2021)] (5.3 σ statistical significance)

Mass and width are, respectively: (3982.5^{+1.8}_{-2.6} \pm 2.1) MeV/ c^2 and (12.8^{+5.3}_{-4.4} \pm 3.0) MeV,

 $Z_{cs}(4003)^+$ (c anti-c u anti-s) was discovered by LHCb [Phys. Rev. Lett. 127, 082001 (2021)] (15 σ statistical significance)

$$4003 \pm 6^{+4}_{-14}$$
 MeV, a width of $131 \pm 15 \pm 26$ MeV

M. Naeem Anwar, J. Ferretti and E. Santopinto, PRD 98, 094015 (2018)

Spectrum of suspected XYZ hidden-charm tetraquarks calculated in the relativized tetraquark (diquark-antidiquark) model

$$H = E_0 + \sqrt{q^2 + m_D^2} + \sqrt{q^2 + m_{\overline{D}}^2} + V_{conf} + V_{OGE}$$

Hamiltonian contains OGE + confining potential. The parameters are fitted to XYZ tetraquark candidates

	State; J ^{PC}	E th [MeV]	E ^{exp} [MeV]	State; J ^{PC}	E th [MeV]	E ^{exp} [MeV]
(\mathbf{q})	$X(3872); 1^{++}$	3872	3871.69 ± 0.17	X(4500); 0 ⁺⁺	4509	$4506 \pm 11^{+12}_{-15}$
4	$Z_{ m c}$ (3900); 1 $^{+-}$	3872	$\textbf{3886.6} \pm \textbf{2.4}$	X(4700); 0 ⁺⁺	4653	4704^{+17}_{-26}
diquark	$Z_{\rm c}$ (4020); 1 ⁺⁻	4047	$\textbf{4024.1} \pm \textbf{1.9}$	X(4140); 1 ⁺⁺	4159	4146.8 ± 2.5
\sim	$Z_{ m c}$ (4430); 1 $^{+-}$	4517	4478 ⁺¹⁵ -18			
$(\overline{\mathbf{q}})$	Y(4008); 1	3960	4008 ± 40			
(\overline{q})	Y(4260); 1	4253	4230 \pm 8			
	$Y(4360); 1^{}$	4353	4341 ± 8			
antidiquark	Y(4630); 1	4642	4634 ⁺⁸ -7			
	$Y(4660); 1^{}$	4670	4643 ± 9			
compact tetraquark	$Z_{\rm c}$ (4240); 0	4253	4239 \pm 18 $^{+45}_{-10}$			

Several XYZ exotics are accommodated

Hidden-charm tetraquarks in the diquark-antidiquark model

M. Naeem Anwar, J. Ferretti and E. Santopinto, PRD 98, 094015 (2018) [only tetraquarks with null strangeness]
 J. Ferretti and E. Santopinto, JHEP 04, 119 (2020) [tetraquarks with a strangeness content]
 J. Ferretti and E. Santopinto, arXiv:2111.08650, accepted on Sci. Bull. [SU(3) flavor tetraquark multiplets]

If the light (q anti-q, with q = u, d or s) and heavy (c anti-c) degrees of freedom are somehow decoupled because of their large mass difference, then the tetraquark multiplet structure is provided by the light component (c anti-c being in flavor singlet) \rightarrow emergence of SU(3)_f multiplets in the hidden-charm sector.

Compact tetraquark multiplets. Theoretical predictions (in square brackets) for the masses are compared to the experimental data (when available). By $C = \pm 1$ nonets we refer to the sign of charge conjugation of the neutral-non-strange members.

Hadro-charmonium (hadro-quarkonium) model

The idea of the hadro-charmonium model was introduced by Dubynskiy and Voloshin in Phys. Lett. B 666, 344 (2008).

In the hadro-charmonium picture a colorless heavy quarkonium "kernel", *Q* anti-*Q*, interacts with a larger light quark "shell", *q* anti-*q* or *qqq*, through Multiple gluon-exchange forces (the QCD analogue of van der Waals forces between molecules)

Tetraquarks and pentaquarks in the hadro-charmonium model

J. Ferretti, Phys. Lett. B 782, 702 (2018) J. Ferretti, E. Santopinto, M. Naeem Anwar and M.A. Bedolla, Phys. Lett. B 789, 562 (2019) J. Ferretti and E. Santopinto, JHEP 04, 119 (2020)

$$H_{\rm hc} = M_{\psi} + M_{\mathcal{X}} + V_{\rm hc}(r) + T_{\rm hc}$$

 M_{ψ} = charmonium mass M_{χ} = light baryon/meson mass T_{hc} = kinetic energy V_{hc} = hadro-charmonium potential

_	J. Ferretti ar	ad E. Santopinto, JHE	EP 04 , 119 (2020); arXiv	/:2111.08650, a	ccepted on Sci. Bull.
	Composition	Quark content	$lpha_{\psi\psi}(n\ell) \; [{ m GeV}^{-3}]$	$J_{ m tot}^P$	Mass (Binding) [MeV]
	$\chi_{\mathrm{c0}}(1P)\!\otimes\!K$	$nar{s}car{c}~(sar{n}car{c})$	11	0-	3886~(-22)
	$\eta_{ m c}(2S)\!\otimes\!K$	$nar{s}car{c}~(sar{n}car{c})$	18	0^+	$3948\ (-183)$
	$\chi_{{ m c1}}(1P)\!\otimes\! K$	$nar{s}car{c}~(sar{n}car{c})$	11	1^{-}	3981 (-23)
	$\psi(2S)\!\otimes\!K$	$nar{s}car{c}~(sar{n}car{c})$	18	1+	$3996\ (-184)$
	$h_{\rm c}(1P)\otimes K$	$nar{s}car{c}~(sar{n}car{c})$	11	1^{-}	3996~(-23)
	$\chi_{\mathrm{c2}}(1P) \otimes K$	$nar{s}car{c}~(sar{n}car{c})$	11	2^-	4027 (-23)

$Z_{cs}(3985) \& Z_{cs}(4003)$

Spectrum of Z_{cs} states predicted almost a year prior to the experimental findings by using SU(3) flavor symmetry

JHEP 04, 119 (2020) cited by the LHCb and BESIII experimental papers on the Z_{cs} findings

SU(3) flavor hidden-charm tetraquark nonets

J. Ferretti and E. Santopinto, arXiv:2111.08650, accepted on Sci. Bull.

In the compact tetraquark model there are two multiplets with $J^P = 1^+ \rightarrow$ one can accommodate each of the Z_{cs} states (characterized by very different decay widths) in a different multiplet

In the hadro-charmonium model there is only one multiplet with $J^P = 1^+ \rightarrow$ either the two Z_{cs} states belong to the same multiplet (unlikely) OR the two Z_{cs} states have a different nature (e.g. one is hadro-charmonium and the other is a molecular state)

Possibility to use the tetraquark multiplet structure (in combination with predictions for the decay widths, production cross-sections ...) to discriminate among the different interpretations

1⁺ tetraquarks: compact tetraquark (upper panel)
VS hadro-charmonium model (lower panel)
interpretations

Fully-heavy tetraquarks in the diquark-antidiquark model

M. Naeem Anwar, J. Ferretti, F.-K. Guo, E. Santopinto and B.-S. Zou, EPJC 78, 647 (2018)

- Ground-state 4*c* and 4*b* tetraquark masses calculated in the diquark-antidiquark model AND in a non relativistic QM with Coulomb interaction
- First predictions for the 4*c* and 4*b* decay widths.
 - Decays proceed via Q anti-Q annihilation into a gluon (Q = c or b)
 - $\Gamma(4b \rightarrow \text{hadrons}) = O(50 \text{ MeV})$
 - $\Gamma(4c \rightarrow hadrons) = O(100 \text{ MeV})$
- Predictions compatible with the experimental data for the width of
- the X(6900) fully-c tetraquark: Γ [X(6900)] = 80 ± 19 MeV
- R. Aaij et al. [LHCb Collaboration], Sci. Bull. 65, 1983 (2020)
- This article was cited by LHCb twice:
 - 1. [JHEP 10, 086 (2018)], search for the GS 4b tetraquark in $4b \rightarrow 4$ muons
- 2. [Sci. Bull. 65, 1983 (2020)], discovery of the X(6900) 4*c* tetraquark

Decays of (Q Q anti-Q anti-Q) into mesons $M_1 M_2$

Spectrum of fully-heavy tetraquarks

M.A. Bedolla, J. Ferretti, C.D. Roberts and E. Santopinto, EPJC 80, 1004 (2020)

bbcc spectrum		cccc spectrum		bbbb spectrum	
J^{PC} ; $N[(S_D, S_{\overline{D}})S, L]J$	E [MeV]	$\int^{PC}; N[(S_D, S_{\overline{D}})S, L]J$	E [MeV]	J^{PC} ; $N[(S_D, S_{\overline{D}})S, L]J$	E [MeV]
0 ⁺⁺ ; 1[(1,1)0,0]0	12445	0 ⁺⁺ ; 1[(1,1)0,0]0	5883	0 ⁺⁺ ; 1[(1, 1)0, 0]0	18748
0 ⁺⁺ ; 1[(1,1)2,2]0	13208	0 ⁺⁺ ; 2[(1,1)0,0]0	6573	0 ⁺⁺ ; 2[(1, 1)0, 0]0	19335
0 ⁺⁺ ; 2[(1,1)0,0]0	13017	$0^{++}; 1[(1,1)2,2]0$	6827	$0^{++}; 1[(1, 1)2, 2]0$	19513
0 ⁺⁺ ; 2[(1,1)2,2]0	13482	0 ⁺⁺ ; 3[(1,1)0,0]0	6948	0 ⁺⁺ ; 3[(1, 1)0, 0]0	19644
$2^{++}; 1[(1,1)2,0]2$	12614	2 ⁺⁺ ; 1[(1,1)2,0]2	6246	$2^{++}; 1[(1, 1)2, 0]2$	18900
2 ⁺⁺ ; 1[(1,1)0,2]2	13204	$2^{++}; 1[(1,1)2,2]2$	6827	2 ⁺⁺ ; 1[(1, 1)2, 2]2	19510
2 ⁺⁺ ; 1[(1,1)2,2]2	13204	2 ⁺⁺ ; 1[(1,1)0,2]2	6827	2 ⁺⁺ ; 1[(1, 1)0, 2]2	19510
2^{++} ; 2[(1, 1)2, 0]2	13101	$2^{++}; 2[(1,1)2,0]2$	6739	2 ⁺⁺ ; 2[(1, 1)2, 0]2	19398
$2^{++}; 3[(1,1)2,0]2$	13412	$2^{++}; 3[(1,1)2,0]2$	7071	$2^{++}; 3[(1,1)2,0]2$	19688

Spectrum of fully-heavy tetraquarks in the compact tetraquark (diquark-antidiquark) model (continues)

A rich spectrum, with orbital and radial excitations, is predicted

This article was cited by the LHCb paper [Sci. Bull. **65**, 983 (2020)], on the discovery of the X(6900) 4c tetraquark

Fotal widths and mass spectrum

C. Becchi, J. Ferretti, A. Giachino, L. Maiani and E. Santopinto, Phys. Lett. B 811, 135952 (2020)

Total widths are proportional to the ratio: ξ = |Ψ_T(0)|²/|Ψ_{J/Ψ}(0)|²
We determine ξ from the diquark-antidiquark model

 $\xi = 4.6 \pm 1.4$ $\Gamma(2^{++}) = (97 \pm 30) \text{ MeV}$

Widths are computed by using the formula: $\Gamma = |\Psi_T(0)|^2 \cdot |\mathbf{v}| \cdot \sigma(cc \to f)$

Computed widths are in perfect agreement with LHCb experimental results

Paper appeared on the arXiv before LHCb discovery

EIC goals See e.g. the EIC Yellow Report, arXiv:2103.05419

EIC will study important topics, including:

- The parton structure of hadrons
 How the global properties nucleon spin and nucleon mass are understood in terms of
 contributions from quarks and gluons.
- 2. The multidimension imaging of nucleons, nuclei and mesons Imaging in position space comes through form factors and GPDs (generalized parton distributions); TMDs (transverse momentum dependent parton distributions) quantify the 3D parton structure of hadrons in momentum space.
- **3. Nucleon structure**

Effect of binding of nucleons on nuclear parton distributions; spatial distributions of partons in a nucleus via diffractive or exclusive processes.

4. The mechanisms of hadronization

Study of hadronization mechanisms production in lepton-hadron collisions, including parton fragmentation, threshold production, string-breaking, and coalescence or recombination.

SCIENCE REQUIREMENTS AND DETECTOR CONCEPTS FOR THE ELECTRON-ION COLLIDER EIC Yellow Report

Conclusions

- The field of exotic hadron spectroscopy and structure is a hot one
- There is a new discovery every 2/3 months by several experiments (LHCb, BESIII, Belle ...)
- In the last three years I have predicted in advance several exotic states: X(6900), Z_{cs} states
- Four of my papers have been cited by the discovery papers of BESIII and LHCb
- One of my papers cited by the PDG 2021 (update)

Thank you for your attention!